Concentrating Solar Power (CSP) Models

SAM includes models for the following kinds of CSP systems: Parabolic trough, molten salt and direct steam power towers, molten salt and direct steam linear Fresnel, dish Stirling, a generic CSP model, integrated solar combined cycle. References for the solar process heat models are listed separately below.

Mehos, M.; Price, H.; Cable, R.; Kearney, D.; Kelly, B.; Kolb, G.; Morse, F. (2020). Concentrating Solar Power Best Practices Study. 257 pp. NREL Report No. TP-550-75763. (PDF 4.5 MB)

SolarPACES Guideline for Bankable STE Yield Assessment, International Energy Agency.

Kesseli, D.; Wagner, M.; Guédez, R.; Turchi, C. (2018). CSP-Plant Modeling Guidelines and Compliance of the System Advisor Model (SAM). SolarPACES Conference Paper. 8pp. NREL Report No. CP-5500-72183. (PDF 300 KB)

Empirical Trough (Based on Excelergy)

Price, H. (2003). Parabolic Trough Solar Power Plant Simulation Model. Proceedings of the ISEC 2003: International Solar Energy Conference, 15-18 March 2003, Kohala Coast, Hawaii. New York: American Society of Mechanical Engineers. pp 665-673. NREL Report No. CP-550-34742. (PDF 548 KB)

Physical Trough Model

Wagner, M. J.; Gilman, P. (2011). Technical Manual for the SAM Physical Trough Model. 124 pp.; NREL Report No. TP-5500-51825. (PDF 3.7 MB)

Turchi, C.; Neises, T. (2015). Parabolic Trough Solar-Thermal Output Model Decoupled from SAM Power Block Assumptions. Milestone report prepared for the U.S. Department of Energy.  PDF 542 KB)

Dish Stirling

Fraser, P. (M.S. 2008). Stirling Dish System Performance Prediction Model. University of Wisconsin-Madison.  ZIP 1.8 MB)

Power Tower

Feierabend, L. (M.S., 2009). Thermal Model Development and Simulation of Cavity-Type Solar Central Receiver Systems. University of Wisconsin-Madison. (ZIP 5.0 MB)

Kistler, B. (1986). A User's Manual for DELSOL3: A Computer Code for Calculating the Optical Performance and Optimal System Design for Solar Thermal Central Receiver Plants. Sandia Report No. SAND86-8018. (PDF 10 MB)

Neises, T.; Wagner, M. (2012). Simulation of Direct Steam Power Tower Concentrated Solar Plant. ASME SE 2012 6th International Conference on Energy Sustainability July 23-26, 2012.

Wagner, M.; Newman, A.; Hamiltion, W.; Braun, R. (2017). Optimized Dispatch in a First-principles Concentrating Solar Power Production Model. Applied Energy Vol. 203 October 2017, pp. 959-971.

Wagner, M. (M.S. 2008). Simulation and Predictive Performance Modeling of Utility-Scale Central Receiver System Power Plants. University of Wisconsin-Madison. (ZIP 32.3 MB)

Linear Fresnel

Wagner, M.; Zhu, G. (2012). A Direct-steam Linear Fresnel Performance Model for NREL's System Advisor Model. NREL Conference Paper CP-5500-55044. (PDF 647 KB)

Wagner, M. (2012). Results and Comparison from the SAM Linear Fresnel Technology Performance Model: Preprint. NREL Conference Paper CP-5500-54758. (PDF 726 KB)

Bachelier, C. (2012).SAM Linear Fresnel solar boiler model: Novatec Solar Boiler Sample File. SAM Virtual Conference: June 20, 2012.

Generic Solar System Model

Wagner, M. J.; Zhu, G. (2011). Generic CSP Performance Model for NREL's System Advisor Model: Preprint. 10 pp. NREL Report No. CP-5500-52473. (PDF 729 KB)

Integrated Solar Combined Cycle

Turchi, C.; Ma, Z. (2014). Co-located Gas Turbine / Solar Thermal Hybrid Designs for Power Production. Renewable Energy Vol. 64 April 2014.7 pp.

Zhu, G.; Nieses, T.; Turchi, C.; Bedillon, R. (2015). Thermodynamic Evaluation of Solar Integration into a Natural Gas Combined Cycle Power Plant.Renewable Energy Vol. 74 February 2015. 9 pp.

CSP Power Cycle Models

Neises, T.; Boyd, M. (DRAFT 2018). Description of SAM's CSP User-defined Power Cycle Model. (PDF 279 KB) The user-defined power cycle option is available as part of the physical trough, molten salt power tower, and molten salt linear Fresnel CSP models in SAM.

Neises, T.; Turchi, C. (2014). A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications. Energy Procedia Vol 49 Pages 1187-1196. The Supercritical Carbon Dioxide (sCO 2) configuration is available as a power cycle option for SAM's molten salt power tower model.

Thermal Energy Storage

Ma, Z.; Glatzmaier, G.; Wagner, M.; Neises, Ty. (2012). General Performance Metrics and Applications to Evaluate Various Thermal Energy Storage Technologies. ASME 2012 6th International Conference on Energy Sustainability, Parts A and B. San Diego, California, USA, July 23–26, 2012

CSP Modeling Approach

Dobos, A.; Neises, T.; Wagner, M. (2014). Advances in CSP Simulation Technology in the System Advisor Model. 7 pp. NREL/CP-6A20-61629.

Solar Industrial Process Heat

Kurup, P.; Turchi, C.; (2015). Initial Investigation into the Potential of CSP Industrial Process Heat for the Southwest United States. 78 pp. NREL/TP-6A20-64709. (PDF 5.3 MB)