
NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Using SAM User Language (SAMUL)

Presenter: Nathan Clark

Date: June 20th 2012

SAM One Day Conference

Scripting Functionalities Utilized to Reduce SAM
User Time-On-Task and Run-Time Simulations

2

Nathan Clark Nathan.Clark@nrel.gov

• A part of NREL’s Research Participant
Program (RPP) for Solar Market
Transformation in the Strategic Energy
Analysis Center. Under direct supervision
from Sean Ong within Energy Forecast &
Modeling group, as well as, Barry Friedman
within the Market Policy and Impact
Analysis group.

• Currently Studying Electrical Engineering at
University of Colorado Denver

• Five years experience as Commercial and
Industrial Electrician in Colorado

PV Break-Even Study Courtesy of Sean Ong
Sean.Ong@nrel.gov

3

• “The SAM User Language (SAMUL) is a built-in scripting
language that allows a user to automate tasks and perform
more complex analyses directly from within SAM.” – SAM
Documentation

• Analysts performing more than “one” simulation

• Variable manipulation

• Data and File management

• Closed Loop I/O

• Multi-processing

Presenter
Presentation Notes
 Running a simulation one at a time is not the best way to utilize one’s time, especially if the analysis involves running hundreds, maybe even thousands of simulations within SAM.
SamUL provides prompts to be used for many applications. User prompts such as alerting, warning or more importantly manipulating input variables on the fly.
Scripted analyses tend to generate a plethora of data. Managing the simulation’s runs and the output variables is mind numbing if there is not an automated process for writing results out to files in a sane and organized fashion. SamUL, for example can write results obtained from simulations out to Excel spreadsheets.
SAM’s built in scripting language provides the unique opportunity to turn the output of results into constraints and/or inputs to be used for a subsequent simulations inputs.
Is it relatively easy to master being a SamUL guru? Yes. Once SamUL enlightenment has been achieved and the simulations are just not fast enough. Do you have what it takes to master the art of being patient? That depends, do you get impatient waiting on popcorn? In case you are like me and fast is just not fast enough SamUL provides the opportunity to take a scripted analysis and transform it into a multi-processed job utilizing as many processes as your particular hardware has available to it.

4

• Is taking the time to write a script always worth it?

o Analyst creates own personal toolbox that can be used for future analyses

• Can I change SAM variables on the fly in between simulations?

o Yes! In fact whole scenarios worth of variables can be manipulated on the fly

• Ok. I have just created more data than I know what to do with. Now what?

o SAMUL can write results to files and perform simple file management

• Is there a way to model an output variable’s trend to constrain subsequent simulations?

o Yes. SAMUL can help solve complex non-linear problems through simple iterative
methods

• SAMUL is fast but running 100,000 simulations is going to take days. What can I do?

o Scripts can be easily transformed from their current state to include multiprocessing
support

Presenter
Presentation Notes
Analysts performing more than “one” simulation
Initially some might ask what is the purpose for spending 20 minutes to think through writing a script for 5 simulations when I can simulate those 5 simulations in 10 minutes by hand. As always, there are tradeoffs. The benefit to spending the time to writing a script is that your work flow and variables utilized are saved and can then be recycled the next time that specific analysis needs to be run.
It is also good practice to save the bits and pieces as well because they can be used to help direct your efforts in a future analysis that would invoke a much more complicated script.
Variable manipulation with User Prompts
This benefit is one of my favorites. You might have a case in which it is troublesome to sift through many lines of code to find that one variable or many variables with which you need to change the value assigned to it. In that case, creating a pop-up prompt to ask the question: “Is this SAM run going run a base case, high case, or low case.” Can help for changing multiple input variables at once and save valuable time. It’s also good for maintenance purposes if a script is being returned to after months/years of absence from working on it.
Data and File management
SamUL can generate as many files as needed with the results split out as specified by the user. For example you might find it useful to split out the results generated from different weather locations into separate .csv files with the file name matching the weather location.
Closed Loop I/O
An example of this will be explained shortly in an ongoing breakeven study of commercial grade PV installations. The idea is to use the outputs to build a simple non-linear iterative method constrained by previous prior adjacent simulations.
Are you impatient? Try splitting up the job
As mentioned earlier there will come a time when fast just isn’t fast enough. Especially when Sam is simulating 10s of thousands of runs. At this point it is time to enter the age of parallel processing and take advantage of computers with more than one processor.

5

• At what price point does PV make “economic sense”?

• How SAMUL can utilize aforementioned scripting techniques to

answer the “does PV make economic sense” question.

• Break-Even study leverages SAMUL and analysis is completed

with ease and significant reduction in analyst error

Presenter
Presentation Notes
How cheap does solar need to be to make “economic sense”?
With SamUL at our disposal we are able to conduct large complex analyses. On ongoing Commercial PV BreakEven study is being conducted through Sam and its’ scripting language to help understand the economics of solar energy and grid parity as well as understand the effects of different utility rates schedules on the valuation of PV
Leveraging mix of aforementioned techniques in SamUL
Using some of the previously described techniques we are able to extrapolate the answer to the above question across over a thousand locations in the U.S. across different types of utility rate structures, as well as, different scenarios such as high, low and a base case. For example what would be the annual energy in kW/hr for a 250kW system in Miami versus the same PV system in Seattle.
Analysis completed with ease and significant reduction in analyst error
Automating the redundant tasks of changing the input parameters for different sensitivities reduces human interaction and discomfort from spending hours of redoing the same task over and over and therefore reduces errors.

6

• 1020 U.S. TMY3 Weather Locations

• 16 different commercial building load profiles generated through E+

• 16 different ASHRAE locations specified

• DSIRE data used for state PV incentives

• Break-Even cost is defined as: total installed cost of PV in which NPV = zero (or
NPB = NPC)

Presenter
Presentation Notes
1020 U.S. TMY Weather Locations
For this study, data was gathered first to set up some hourly inputs into SAM. First for the BreakEven study Typical Meteorological Year 3 dataset was used. Taken from the National Solar Radiation Data Base for the years 1991-2005. The Sam weather library was then pointed to the folder to set up all the locations to be batched through.
16 different commercial building load profiles generated through E+
Using DOE’s E+ a whole building thermal energy modeling program used for a number of purposes. We purposed for the means of this study to supply 8760 total building energy consumption load data for the 16 different buildings types across all the TMY3 locations.
16 different ASHRAE locations specified
Because of the size of the U.S. there are dramatically different climates to consider. Therefore ASHRAE 90.1 (American Society of Heating Refrigerating and Air-Conditioning Engineers) which provides the energy standard for commercial buildings within different climate locations. It is broken out into different colors that contrast temperature and humidity levels like marine, dry and moist.
DSIRE data used for state PV incentives
The Database of State Incentives for Renewables & Efficiency (DSIRE) provides a one stop shop for state, local, utility and federal renewable energy incentives and policies that are utilized to promote renewable energy and energy efficiency throughout the country. The DSIRE database was used to help build in input file to be into Sam incentives utilities. Incentives such as tax and production incentives.
BreakEven defined as: total installed cost of PV when NPC=NPB or when NPV = 0
For the purposes of this specific analysis chosen to represent SamUL’s functionalities. BreakEven cost is defined as the total installed cost of PV in which the Net Present Value = 0 or the Net Present Benefit = Net Present Cost. This happens when the present value of future cash flows minus the purchase price of the PV system equals zero, subject to the particular building’s particular utility service territory and rate structure it’s under.

7

Presenter
Presentation Notes
Here are a few quick examples to show how quickly and easy it is to set up a script in SamUL. Of course, this assumes a slight familiarity with code. All of what I’m going to show you can be found with in the help tab within SAM documentation along with many great starter examples to get your feet wet.

To write and run a simple SamUL script:
1. SamUL can be launched from within any type of analysis within SAM.
2. It can be found from the Developer tab and initiated by clicking New SamUL script.
3. Once launched, a ribbon will appear with some helpful quick launch buttons. The first of these to consider is the browse function library witch houses all the built in SamUL functions that you will need to get your script to run properly.
4. Depending on the type of function to be used you can then find all the necessary I/O variables to manipulated within the particular SamUL function that you may be using.
5. An example of this can be seen on this slide as it shows that if you desire to keep track of the current location that you are tracking you can first find the “getinput” function select it and then a helpful pop up tool tip will notify what type of arguments it will take and from there you can select the particular input that you would like to extract, in this case “climate.location”. This information can of course be stored in a variable for later use.
6. You can use the toolbar to find the functions and variable to help write the rest of your script as shown.
7. Finally click the execute button which looks like a play button and you are off running.

8

Load Inputs:
setinput ("elecload.user_data", load)
setinput("climate.location", file_list[count])
setinput ("txc.itc.state.percentage.value", 20)

Read Variables/Make Changes:
setinput ("pv.cost.per_module", Cost - 0.001)
getoutput ("sv.installed_cost_per_capacity")
getoutput("sv.npv")

Dump Results:
getoutput ("firstyear.ur.monthly.revenue_w_sys")
getoutput ("system.annual.e_net")
writeln (output_file, results)

Make Changes
to Input Values

Load Inputs

Write
Results
To File

Begin SamUL
Script

Execute
SAM

Execute
SAM

Get
Outputs

Presenter
Presentation Notes
This slide will show some specific examples of variables used within the break even study. It should be noted that this is not an exhaustive list of all variables actually utilized, but rather some of the more important ones to give a high level view of the workflow for this analysis. The following are the various stages of SamUL I/O variables used throughout.

setinput ("elecload.user_data", load) – Generated through E+, this loads in an array of 8760 elements.
setinput("climate.location", file_list[count]) – This cycles through a folder with the relevant TMY3 location of choice
setinput ("txc.itc.state.percentage.value", 20) – This is just one of many incentive inputs to be set for a particular location. This one is for a 20% state 			 		tax credit incentive.

setinput ("pv.cost.per_module", Cost - 0.001) – This is a nice example to show that formulas can be used within Sam functions as well. Here a tenth 			 		of a cent is being subtracted from the cost of a PV module. 	
getoutput ("sv.installed_cost_per_capacity") – This is an output produced after a single Sam simulation has complete that gives the total installed cost 			 per Watt of the system
getoutput("sv.npv") – Output for the Net Present Value

getoutput ("firstyear.ur.monthly.revenue_w_sys") – The output for the total first year revenue with the PV system
getoutput ("system.annual.e_net") – Finally another output describing the total annual net energy generated by the PV system

All these I/O variables when cycled through (i.e. put into a for or while loop) can be used to generate as many simulation runs as needs to be to the specificity of the SamUL user.

9

• User Prompts: Making the Script User Friendly and Portable to
 other Users and Analysts

Presenter
Presentation Notes
At times a specific analysis may have to be run through different scenarios. For example, you may have a PV system that you want to test at a base case of: 80% dc to ac derate factor with a 15 degree tilt and a low case with a 0 degree tilt and a 77% dc at ac derate factor and so on. In SamUL you can predefine as many input variables as needed to receive a set of hard values to be automatically entered into for you. This would be advantageous for two reasons. One it makes life easier for the analyst to iterate over different scenarios without having to dive into the code and change values and with that comes the second reason in that it adds a desirable layer of abstraction between a less experience Sam user and interaction with the code. It allows the author of the code to provide to his/her colleagues the same level of complexity that he/she designed into a nice portable package. Anyone new or less familiar with coding or have absolutely know idea are able to execute the same scripted simulation with ease subjected to different scenarios.

10

Outputting Results:
Where an Analyst’s
Rubber Meets the

Road

Set Inputs:
Give Gas

Outputs
into Inputs:

Engine
Turns Over

•Cost = 10
•simulate()

•price_x[0] = getoutput ("sv.installed_cost_per_capacity")
•npv_y[0] = getoutput("sv.npv")
•simulate()

•setinput ("pv.cost.per_module", Cost - 0.1

•simulate ()

•price_x[1] = getoutput ("sv.installed_cost_per_capacity")
•npv_y[1] = getoutput("sv.npv")

While (the Net-Present-Value of
PV is Less Than Zero)

Presenter
Presentation Notes
Because Sam provides the ability to iterate over many simulations it allows us the unique ability to perform a closed loop analysis. This happens in the case that if certain outputs such as the Net Present Value is needed to know how to constrain the next iteration for a PV systems‘ total installed cost per watt in the example of the break-even study. We could simply set up some pseudo-code for a script like so.

The closed loop constraining test would be “While the Net-Present-Value of PV is Less Than Zero Do the following:
Give Gas: Give initial value of 10 dollars to cost, then simulate.
Turn Engine Over: save the current values of installed cost per watt and net present value.
Reduce the cost per watt. For example reducing the cost of the module by a tenth of a cent, then re-simulate.
 Wheels Turn Over: save current values of installed cost per watt and net present value
Check to see if net present value is less than zero, if so rinse-and-repeat until NPV equals zero.

11

NPV ($)

Co
st

 ($
)

TIC = TIC – $0.10
Simulate

TIC = TIC – $0.10
Simulate

Flat Start: Cost
= $10.00

SAM: NPV
!= 0

SAM NPV
!= 0

Break-Even
Cost =

$4.80/W

Presenter
Presentation Notes
Here the following workflow diagram and graph displays what is graphically taking place, rather than using the code snippets as examples from the previous slide. We can start off with a flat start of $10.00/installed Watt of PV run the simulation. From there we can then subtract 10 cents per watt from the total installed cost input and re-simulate. After simulation is complete we may be able to extract the Net-Present-Value as provided by SAM. The NPV here is the constraint that will either allow the simulation to continue or break. If NPV != 0 then the total installed cost subtracted down a further 10 cents per watt. This process is repeated until the NPV = 0 and we have reached the Break-Even Cost for the PV system. The closed loop process allows us to iteratively converge on an unknown solution from a non-linear equation. In practice you might find there to be a direct linear proportionality between two variables. In this case you could simple gather an initial (x,y) point. Re-simulate with some parameter changed and recollect another (x,y) point. At this stage only two points are needed to employ the all to well known classic point slope formula to arrive at the desired solution.

12

Opening/Creating Files for Reading From:
input_file = open (workdir + "EIA_Average_Rates.csv", "r")

Modifying & Copying Files:
strlen(file_name), strreplace(“replace_this”, “with_that), copyfile("c:/test.txt", "c:/test2.txt")

Opening/Creating Files for Writing To:
output_file = open (workdir + "EIA_Average_Rates.csv", “w"), WriteLn(), WriteResults()

workdir = "C:/Documents and Settings/nclark/Desktop/Commercial_BreakEven/“

Presenter
Presentation Notes
SamUL provides many helpful functions for managing large data and file sets. Creating a work directory is usually good practice for keeping a top level directory to house all folders, sub-folders and files throughout.
Whether you are trying to read in a large number of input values or trying to load in a specific set of TMY locations SamUL can help manage many of these files and inputs for.
A good practice to establish for certain cases is generally to name the sub-folders after the specific locations. This helps with keeping track of the unique Sam simulations run and where to store those results to. Using SamUL’s functions for modifying the file names and retaining or slightly changing the file names to create the sub directories can be done with functions such as strreplace() and copyfile() among others.
Additional criteria that may have been used to divide up the Sam scripting can be leveraged for further subdirectory names and keep your directories neat and organized.
Finally SamUL has a many different ways to format and output a simulations results as the user specifies. Minus the colors and bolding - this table shown portrays a great example of the type of complexity with which an Excel table can be formatted directly from Sam.

13

Presenter
Presentation Notes
SamUL provides the analyst with the means to perform hundreds of simulations. What would normally take hours to complete by hand can now be done in a matter of seconds or minutes. What about thousands of simulations?
 Personally I can attest to allowing SamUL to start on a Friday and return to work on a Monday morning only to find Sam still plugging away. At this point it no longer becomes a serial issue but rather a parallel issue because of the sheer size of simulation runs. For this Sam has provided the means to incorporate multi-processing for most types of scripts created that would stand to benefit from multi-processing. The work is split up into as many cores an analysts machine is fitted with. As the picture suggests an 8 core machine is capable of running 8 simulations at once.

14

• State Projected Electricity Generation •Residential Disaggregated Load Cost Calculator

Presenter
Presentation Notes
As so far seen, SamUL is a well-rounded robust scripting utility that helps Sam spread its legs. It is also useful for scripting tasks outside the scope of Sam’s main relevant features. Some examples include:

Generating computationally heavy projected electricity and PV generation breakouts by state out to several years using SamUL.
For this EIA AEO report for electricity generation by electricity market module was used to find projections out to 2035. With those figures and using the DSIRE database’s s RPS along with GIS capabilities to identify state and market pool intersections to arrive at weights to then determine each states total projected electrical and pv generation.

Using Sam’s built in Utility Rate Database feature to build a residential disaggregated load cost calculator.
For this SamUL was utilized for being in the muscle to generate a very large dataset. Essentially it helped generate cost profiles for 42 common household appliances sensitive to over 3000 unique utilities within the U.S.
	

15

 SamUL arms the Sam user with a powerful toolset for running numerous
simulations sequentially

 Variable manipulation through dynamic user prompts creates a portable
platform that is user friendly for others

 Scripting Sam Results can be extended beyond to file and data
management

 Simple closed loop I/O routines can be created for to find solutions to
otherwise unsolvable problems

 High Performance Computing through Parallel processing is the future

Presenter
Presentation Notes
SamUL arms the Sam user with a powerful toolset for running numerous simulations sequentially
	SamUL expands the Sam users toolset to include a suit of scripting abilities to capable of expediting what would otherwise be long and arduous rinse and 	repeat type routines	
Variable manipulation through dynamic user prompts creates a portable platform that is user friendly for others
	A well constructed analysis lends itself to be reused as a building block for a larger more complex analysis. User prompts allow that analysis to stand the 	test of time 	by both being portable between analysts, either beginners or more advanced users and also to eliminate the hassale of sifting through code 	to change several variable when switching between scenarios/
Scripting Sam Results can be extended beyond to file and data management
	Data and file management used with SamUL offers many opportunities to help keep large amounts of data well organized and succinctly managed 	through directories
Simple closed loop I/O routines can be created for to find solutions to otherwise unsolvable problems
	Simple closed loop routines are a great trick to help solve non-linear problems by a traditional iterative method
High Performance Computing through Parallel processing is the future
	Parallel processing can save a significant amount of time and allow the analyst to spend more time focus on the analysis portion of a project rather than waiting on 	simulations to complete

I hope the above aforementioned examples in tandem with the PV break-even study are enough to whet the appetite about the advantages that SamUL can bring to the table. Thank you and enjoy the rest of conference.

Thank You

	Slide Number 1
	Nathan Clark				Nathan.Clark@nrel.gov
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Closed Loop Analysis of Break-Even Study
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Closing Comments
	Slide Number 16

