

SAM Webinar Series 2023

Geothermal Electricity Technology Evaluation Model (GETEM) in SAM

Linkages between NREL's dGen, REopt and SAM Models

Financial Models for Utility-scale Projects in SAM

Modeling Utility-scale Photovoltaic Projects in SAM

Modeling Behind-the-meter (BTM) Batteries in SAM

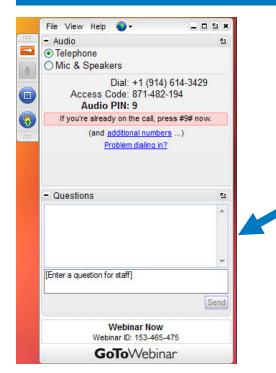
Webinars are free

Register at https://sam.nrel.gov/events

Webinars are recorded

- https://www.youtube.com/@SAMDemoVideos
- "Videos" pages at https://sam.nrel.gov

January 19


July 11

July 19

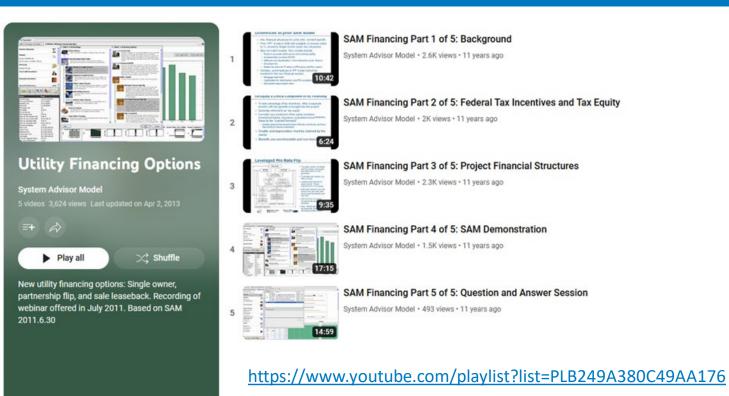
August 23

September 20

Questions and Answers

Desktop application

Instant Join Viewer


We will either type an answer to your question or answer it at the end of the presentation.

Find webinar recordings at https://sam.nrel.gov/

Agenda

- Intro to SAM and overview of financial models
- **Ownership structures**
- **Cash flow**
- **Financial metrics**
- **Revenue options**
- Live demonstration

Update to 2011 and 2013 webinars

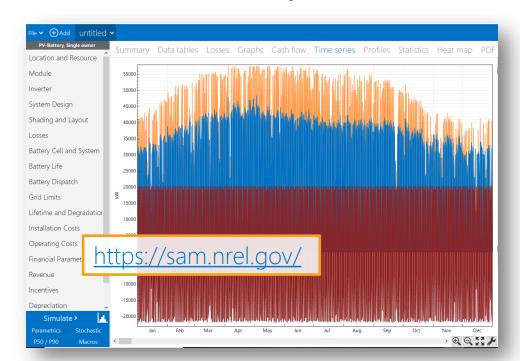
https://www.youtube.com/watch?v=QZvPweCxzkI

Information Resources

Help System

- Press F1 key or click Help in SAM software
- Web version at https://sam.nrel.gov/help

SAM Forum


- https://sam.nrel.gov/forum
- Use search box to find information
- Register on website to post questions

Email

sam.support@nrel.gov

System Advisor Model (SAM)

Free software that enables detailed performance and financial analysis for renewable energy systems

- ✓ Desktop application
- ✓ Software development kit with PySAM Python package
- ✓ Open source code repositories

Model Structure

Weather Data

System Specs

Losses

Performance Model

Calculate hourly or sub-hourly power production (kW)

- Monthly, annual production
- Capacity factor
- Operating parameters

Costs

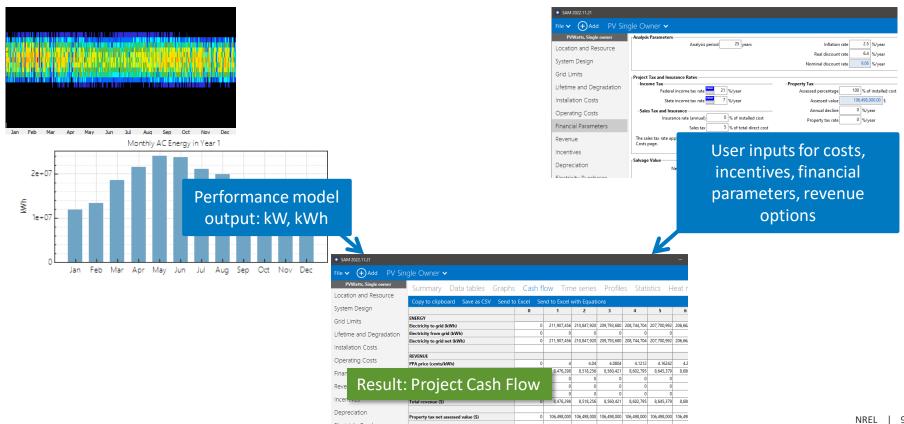
Incentives

Financing

Compensation

Production (kWh)

SS


Financial Model

Calculate after-tax annual cash flow from project perspective (\$)

- NPV
- LCOE
- Payback period
- Operating costs
- Revenue/savings
- Taxes

Value (\$)

Financial model inputs include energy, costs, incentives, financial parameters, and revenue

erformance

Photovoltaic Energy storage Electric battery Electric thermal storage Concentrating solar power Industrial process heat Marine energy Wind power Fuel cell Geothermal power Solar water heating Biomass combustion

Generic system

Models

Power purchase agreements Single owner Partnership flips Sale leaseback Residential **Financial** Commercial Third party ownership Merchant plant Community solar Simple LCOE calculator

erformance

Photovoltaic Energy storage Electric battery Electric thermal storage Concentrating solar power Industrial process heat Marine energy Wind power Fuel cell Geothermal power Solar water heating Biomass combustion

Generic system

Financial

Power purchase agreements

Single owner

Partnership flips

Sale leaseback

Residential

Commercial

Third party ownership

Merchant plant

Community solar

Simple LCOE calculator

FOM and BTM Models

Power Purchase Agreement (PPA), or Front of Meter (FOM)

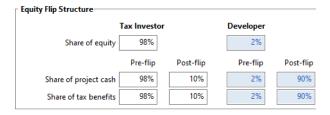
Power generation projects

- Electricity is delivered to the grid
- Sell electricity at negotiated or market prices
- Earn revenue
- "Feasible" project: Revenue is greater than project costs

Distributed Energy, or Behind the Meter (BTM)

Customer side of meter

- Electricity meets load with excess delivered to grid
- Buy and sell electricity at retail rates
- Reduce annual electricity bill
- "Feasible" project: Bill savings are greater than project costs


Ownership Structures

Single entity owns, builds, and operates project

- PPA single owner
- Merchant plant
- Community Solar

Separate tax equity and investor partners

- PPA Partnership flip
 Tax investor and developer share cost and benefit of project, benefits go to developer after "flip year"
- PPA Sale leaseback
 Tax investor purchases project from developer
 and leases it back to the developer

Sale Leaseback			
	Developer (lessee) operating margin	20	\$/kW
	Developer (lessee) margin escalation	2	%/year
Tax inve	stor (lessor) required lease payment reserve	6	months of reserve

Financial Model Notes

Models are based on a high-level, pro-forma cash flow

- Annual cash flows
- Simple enough to generate quick results
- Detailed enough for pre-feasibility project evaluation
- General enough to be useful for a wide range of applications

Cash flow and metrics are from the project perspective

- Account for project installation and operating costs, incentives, debt
- Do not account for external factors that may affect decisionmaking

Project Cash Flow

- Year zero value accounts for initial investment, incentives, and construction financing cost
- Years 1 and later account for revenue, expenses, taxes, incentives, and debt costs
- From project perspective, and from each partner's perspective as applicable
- You specify costs in Year 1 \$, SAM applies inflation to calculate out-year values
- SAM does not apply inflation to revenue.
 Use the PPA escalation rate to inflate revenue.

Summary	Data tabl	es Losses	Graph	ns	Cash f	low T	ime serie	s Prof	iles
Copy to clipboa	rd Save a	s CSV Send to	Excel S	Send	to Excel	with Equa	tions		
			0		1	2	3	4	5
ENERGY									
Electricity to grid (k	Wh)			0 2	225,640,656	224,720,60	8 223,784,848	222,830,368	221,856
Electricity from grid	(kWh)			0	-55,056	-55,05	6 -55,068	-55,068	-55
Electricity to grid ne	t (kWh)			0 2	225,585,600	224,665,53	6 223,729,792	222,775,296	221,801
REVENUE									
PPA price (cents/kW	/h)			0	4	4.0	4.0804	4.1212	4.16
PPA revenue (\$)				0	9,025,626	9,078,71	2 9,131,317	9,183,294	9,234
Curtailment paymen	t revenue (\$)			0	0		0 0	0	
Capacity payment re	venue (\$)			0	0		0 0	0	
Salvage value (\$)				0	0		0 0	0	
Total revenue (\$)				0	9,025,626	9,078,71	2 9,131,317	9,183,294	9,234
Property tax net ass	essed value (\$))		0 1	106,498,768	106,498,76	8 106,498,768	106,498,768	106,498
OPERATING EXPENS	ES								
O&M fixed expense	(\$)			0	0		0 0	0	
O&M production-ba	sed expense (\$)		0	0		0 0	0	
O&M capacity-based	d expense (\$)			0	1,500,011	1,537,51	1 1,575,949	1,615,348	1,655
Electricity purchase	(\$)			0	2,202	2,22	4 2,247	2,269	2
Property tax expens	e (\$)			0	0		0 0	0	
Insurance expense (\$)			0	0		0 0	0	
Land lease expense	(\$)			0	0		0 0	0	
<									
		% of Total Depreciable Basis	Gross Amo		IBI Reduction	CBI Reduction	Depreciable B		
DEPRECIATION AND	ITC: STATE	1							
MACRS 5-yr		92.78	102,632,86	4.00	0	0	102,632,86	4.00 102,632,	864.00
MACRS 15-vr		1.59	1 710 54	7.75	0	0	1 710 54	7.75	0

Financial Metrics

Net present value (NPV), \$

- The present value of after-tax cash flows over the analysis period
- A negative value may indicate a financially infeasible project

Internal rate of return (IRR), %

- The discount rate at which NPV = 0
- A measure of profitability

Power price, \$/kWh

Size of debt, \$

Metric	Value
Annual AC energy in Year 1	211,907,456 kWh
DC capacity factor in Year 1	24.2%
Energy yield in Year 1	2,119 kWh/kW
PPA price in Year 1	4.00 ¢/kWh
PPA price escalation	1.00 %/year
LPPA Levelized PPA price nominal	4.32 ¢/kWh
LPPA Levelized PPA price real	3.45 ¢/kWh
LCOE Levelized cost of energy nominal	4.27 ¢/kWh
LCOE Levelized cost of energy real	3.41 ¢/kWh
NPV Net present value	\$1,025,574
IRR Internal rate of return	7.26 %
Year IRR is achieved	20
IRR at end of project	9.57 %
Net capital cost	\$113,663,144
Equity	\$53,756,996
Size of debt	\$59,906,152
Debt percent	52.70%

Consider metrics as a set!

Metric	Value
Annual AC energy in Year 1	211,907,456 kWh
DC capacity factor in Year 1	24.2%
Energy yield in Year 1	2,119 kWh/kW
PPA price in Year 1	4.00 ¢/kWh
PPA price escalation	1.00 %/year
LPPA Levelized PPA price nominal	4.32 ¢/kWh
LPPA Levelized PPA price real	3.45 ¢/kWh
LCOE Levelized cost of energy nominal	4.27 ¢/kWh
LCOE Levelized cost of energy real	3.41 ¢/kWh
NPV Net present value	\$1,025,574
IRR Internal rate of return	7.26 %
Year IRR is achieved	20
IRR at end of project	9.57 %
Net capital cost	\$113,663,144
Equity	\$53,756,996
Size of debt	\$59,906,152
Debt percent	52.70%

- NPV > 0
- Reasonable PPA price
- Reasonable IRR
- IRR achieved by target year
- Reasonable debt size

"Reasonable" depends on the context.

Sources of Revenue

Single owner, partnership flip, sale leaseback

PPA price with optional annual escalation

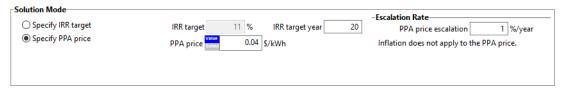
- Time-of-delivery (TOD) multipliers for price that varies daily and/or seasonally, or by time step
- Capacity payments
- Curtailment payments

Merchant plant model

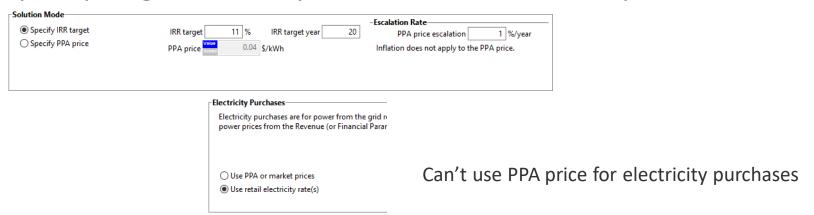
Time series power price and cleared capacity

- Energy market
- Ancillary service market (up to 4)
- Capacity payments

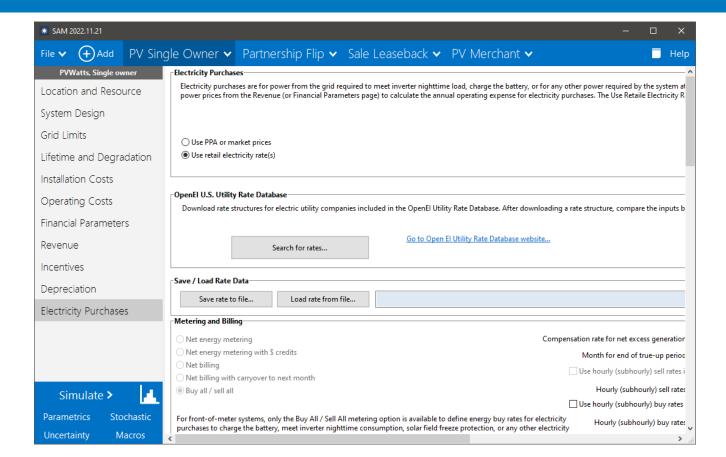
Sources of Revenue


Community solar

Subscriber payments


- Up-front
- Annual
- Generation

Solution Mode


Specify PPA price, SAM calculates IRR

Specify target IRR and year, SAM calculates PPA price

Demonstration

Thanks! Questions?

```
Janine Freeman Keith – project lead, photovoltaic and wind models

Nate Blair – emeritus lead, financials, costs, systems

Darice Guittet – software development, battery models

Brian Mirletz – software development, battery models, utility rates

Matt Prilliman – photovoltaic and marine energy models

Steve Janzou – programming, utility rate structures (subcontractor)

Paul Gilman – user support and documentation (subcontractor)

Ty Neises – concentrating solar power models

Bill Hamilton – concentrating solar power models
```

sam.support@nrel.gov