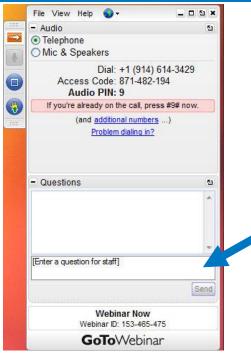


Photovoltaic Systems in SAM 2020.2.29

Paul Gilman 2020 SAM Webinars August 5, 2020

SAM Webinars for 2020


Introduction to SAM Workshop July 22 **PV Systems in SAM 2020.2.29 Aug 5** Batteries in SAM 2020.2.29:

Focus on Battery TechnologyAug 19Behind-the-Meter SystemsSep 2Front-of-Meter SystemsSep 16

Register for free at: <u>https://sam.nrel.gov/events.html</u>

This webinar will be recorded and posted on the SAM website at <u>https://sam.nrel.gov/</u>

Questions and Answers

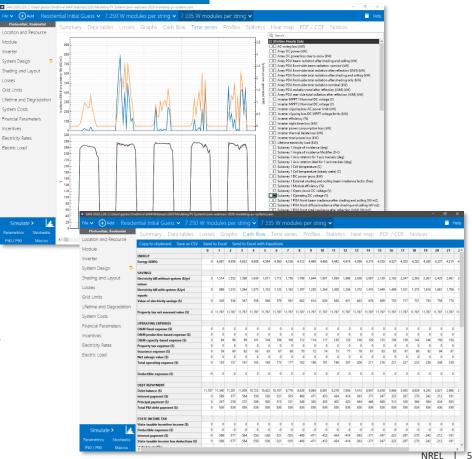
Desktop application

Instant Join Viewer

We will either type an answer to your question or answer it at the end of the presentation.

- **1** Detailed design steps for a residential PV system
- 2 String sizing with the System Sizing macro
- **3** Utility scale system: Tracking and self-shading
- 4 Shading, soiling, snow, and other losses
- **5** P50/P90 simulations with NREL NSRDB data
- 6 Importing data from other models
- 7 Questions and answers

What is SAM?


The System Advisor Model

Free computer software developed and distributed by the U.S. Department of Energy's National Renewable Energy Laboratory

Calculates:

- A power system's energy output over one year
- A power project's cash flow over years of operation

"Introduction to SAM 2020.2.29" https://sam.nrel.gov

Residential PV system

Installed, owned, operated by a residential homeowner.

Power from system reduces homeowner's monthly electricity bill.

Is a project economically feasible given its cost and energy production?

"Electricity Rates and Bill Savings for Residential and Commercial Projects" https://sam.nrel.gov/financial-models/residential-and-commercial

Neighborhood PV system in Portland, Oregon

First, choose a performance and financial model

Performance model calculates power produced by PV system

- Get weather data
- Choose module and inverter
- Design the system

Financial model calculates electricity savings and project cash flow

- Get load and rate data
- Define financial parameters
- Define system costs

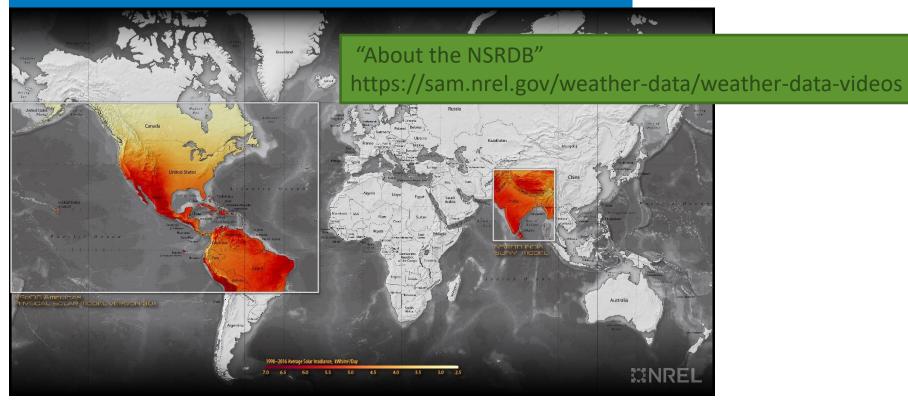
 Photovoltaic 	> Power Purchase Agreement
Detailed PV Model	✓ Distributed
PVWatts	Residential Owner
High Concentration PV	Commercial Owner
> Battery Storage	Third Party Owner - Host
> Concentrating Solar Power	Third Party - Host / Developer
> Marine Energy	Merchant Plant
Wind	LCOE Calculator (FCR Method)
Fuel Cell-PV-Battery	No Financial Model
Geothermal	
Solar Water Heating	
Biomass Combustion	
Generic System	

Next, download a weather file

Type a street address, location name, or latitude longitude pair, like:

- "golden, co"
- "15013 Denver West Parkway Golden, CO"
- "39.74,-105.18"

SAM downloads weather files from the National Solar Radiation Database


- Typical meteorological year (TMY) suitable for long term cash flow model
- Single year when load data is available for a particular year
- Multiple files for P50/P90 analysis

Download Weather Files-

The NSRDB is a database of thousands of weather files that you can download and add to your to your solar resource library: Download a default typical-year (TMY) file for most long-term cash flow analyses, or choose files to download for single-year or P50/P90 analyses. See Help for details.

One location	O Multiple locations			4				
golden, co		Default TMY file \sim		Download and add to library				
For locations not covered by the NSRDB, click here to go to the SAM website Weather Page for links to other data sources.								

NSRDB Coverage Map

For other sources of data, see https://sam.nrel.gov/weather-data

When the download finishes, SAM automatically adds the file to your solar resource library, which is a list of the weather files on your computer.

Solar Resource Library

The Solar Resource library is a list of weather files on your computer. Choose a file from the library and verify the weather data information below.

The default library comes with only a few weather files to help you get started. Use the download tools below to build a library of locations you frequently model. Once you build your library, it is available for all of your work in SAM.

Filter: Name ~								
Name	Latitude	Longitude	Time zone	Elevation	Station ID	Source	^	
fargo_nd_46.996.8_mts1_60_tmy	46.9	-96.8	-6	274	14914	TMY2		
imperial_ca_32.835205115.572398_psmv3_60_tmy	32.85	-115.58	-8	-20	72911	NSRDB		
phoenix_az_33.450495111.983688_psmv3_60_tmy	33.45	-111.98	-7	358	78208	NSRDB		
tucson_az_32.116521110.933042_psmv3_60_tmy	32.13	-110.94	-7	773	67345	NSRDB		
golden_co_39.749672105.216019_psm3_60_tmy	39.73	-105.22	-7	1934	145808	NSRDB		
SAM scans the following folders on your Click Add/remove weather file folders to use weather files stored on your computer, click Add/remove Weather								
add othe	er files	i to you	ir librar	у.				
C:\Users\gaobo/SAM Downloaded weather Files Add/remove weather file folders								
					~ [Refresh library		

"Downloading Solar Resource Data" https://sam.nrel.gov/weather-data/weather-data-videos

Design the system

System Size

Choose Inverter

Choose Modules

String Size

Number of Strings


Array Orientation

Design the system: System size

Use roof area to determine maximum system capacity: Array Capacity (W) = Roof Area (m²) * Module Efficiency * 1,000 W/m² $35 \text{ m}^2 * 0.15 * 1,000 \text{ W/m}^2 = 5,250 \text{ W}$

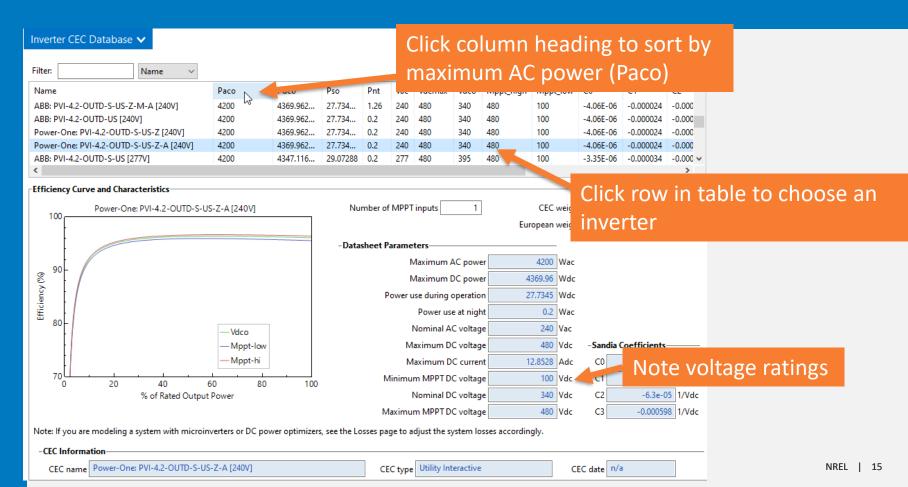
Assume about 1,000 W/m² of sunlight available on a clear sunny day at noon based on Standard Test Conditions (STC).

About 17 x 12 feet available on each surface: 17 ft * 12 ft = 204 sq ft * 2 = 408 sq ft $\approx 35 m^2$

Design the system: Inverter

System Size ~5 DC kW, 1.2 DC/AC ratio

Inverter 5,000 DC W / 1.2 = 4166.7 AC W ≈ 4200 AC W


Module

String Size

Number of Strings

Array Orientation

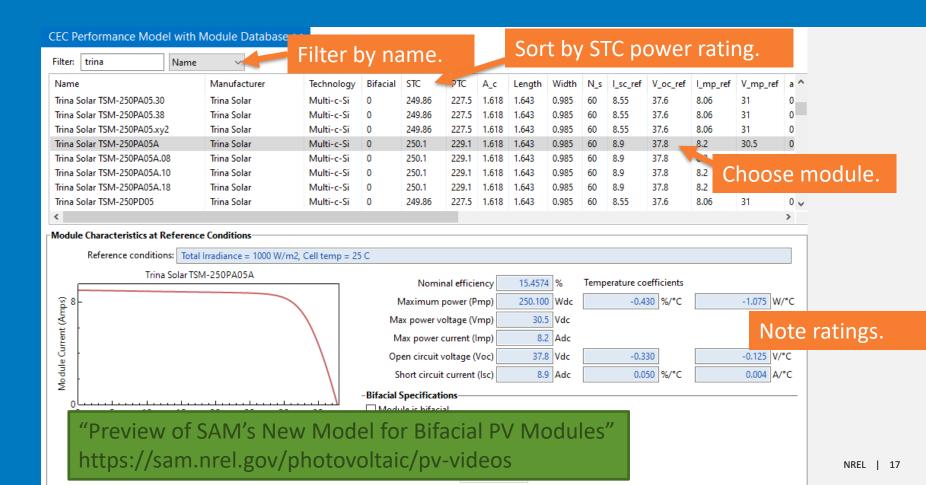
Inverter: 5 DC kW / $1.2 \approx 4.2$ AC kW

Design the system: Module

System Size 5 kW, 1.2 DC/AC ratio

4200 AC W Power-One PVI-4.2

Module


Initial guess: 250 W modules, 5,000 W array / 250 W module = 20 modules

String Size

Number of Strings

Array Orientation

Module: 5 DC kW / 20 modules = 250 DC W module

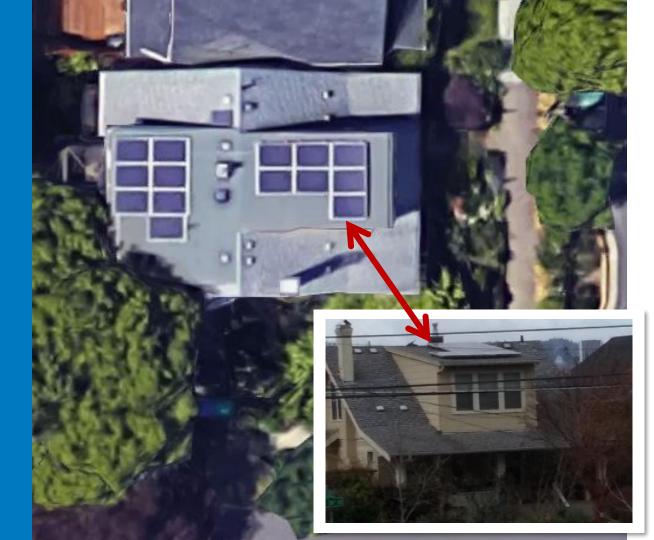
Design the system: String size

System Size 5 kW, 1.2 DC/AC ratio

Inverter

4200 AC W Power-One PVI-4.2

Module


250 DC W Trina Solar TSM-250

String Size

Inverter Maximum Voltage / Module Voc Maximum modules per string: 480 VDC / 37.8 VDC = $12.7 \approx 12$ Minimum modules per string: 100 VDC / 37.8 VDC = $2.65 \approx 3$

Number of Strings Array Orientation Array divided into two strings facing East and West

Use 2 inverter MPPT inputs because subarrays have different orientations

Design the system: Number of strings

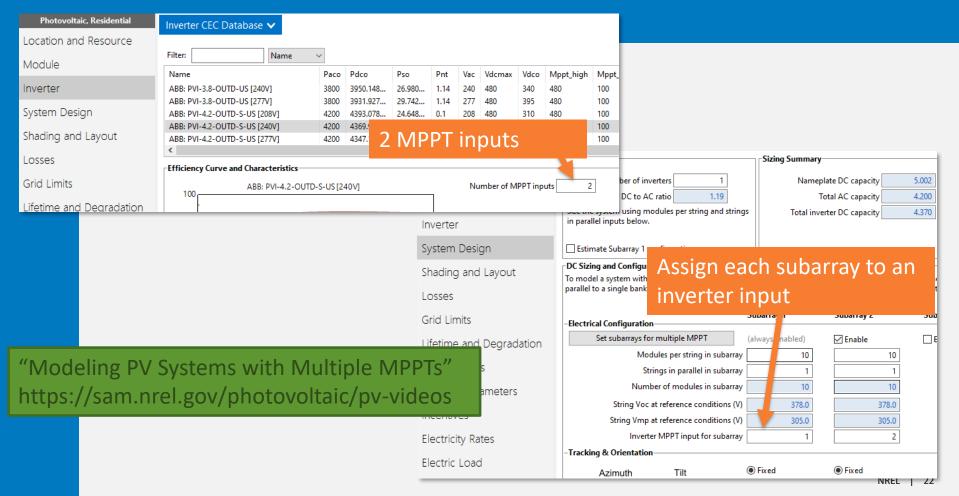
System Size 5 kW, 1.2 DC/AC ratio

Inverter 4200 AC W Power-One PVI-4.2

Module 250 DC W Trina Solar TSM-250

String Size 10 modules

Number of Strings 2 strings, 2 inverter MPPT inputs


Array orientation

Two subarrays, 10 degree tilt, E-W facing

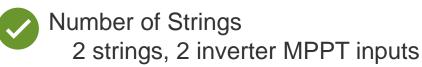
One inverter, two strings of 10 modules. E-W facing subarrays

Photovoltaic, Residential	AC Sizing	Sizing Summary					
Location and Resource	Number of inverters 1	Namepla	te DC capacity	5.002 kW	dc Number of modules	20	
Module	DC to AC ratio 1.19	Tot	al AC capacity	4.200 kW	ac Number of strings	2	
Inverter	Size the system using modules per string and strings in parallel inputs below.	Total invert	er DC capacity	4.370 kW	dc Total module area 32	2.4 m ²	
System Design	Estimate Subarray 1 configuration					Verify cap	bacities
Shading and Layout	DC Sizing and Configuration To model a system with one array, specify properties for parallel to a single bank of inverters, for each subarray,					in	
Grid Limits	-Electrical Configuration	ubarray 1	Subarray 2	Su	Enable two subar	rays, 10	
Lifetime and Degradation		lways enabled)	Enable		modules per strir	ng	
System Costs	Strings in parallel in subarray	1	1				-
Financial Parameters	Number of modules in subarray	10	10				
Incentives	String Voc at reference conditions (V)	378.0	378.0				
Electricity Rates	String Vmp at reference conditions (V)	305.0	305.0				
Liectricity Rates	-Tracking & Orientation						
Electric Load	N=0 Vert. 270 S 180) Fixed) 1 Axis) 2 Axis) Azimuth Axis) Seasonal Tilt] Tilt=latitude 10 270	 Fixed 1 Axis 2 Axis Azimuth Axis Seasonal Tilt Tilt=latitude 10 90 				
	Ground coverage ratio (GCR) Tracker rotation limit (deg)	0.3	0.3				NREL 21

Two inverter MPPT inputs, configure on System Design and Inverter input pages

Design the system: Array orientation

System Size 5 kW, 1.2 DC/AC ratio


Inverter 4200 AC W Power-One PVI-4.2

Module 250 DC W Trina Solar TSM-250

String Size 10 modules

Array orientation

Two subarrays, 10 degree tilt, E-W facing

Orientation for two East-West facing subarrays at 10° tilt

Photovoltaic, Residential	AC Sizing	Sizing Summary				
Location and Resource	Number of inverters 1	Nameplat	te DC capacity	5.002 kWdc	Number of modules	20
Module	DC to AC ratio 1.19	Tot	al AC capacity 4	4.200 kWac	Number of strings	2
nverter	Size the system using modules per string and strings in parallel inputs below.	Total inverte	er DC capacity 4	4.370 kWdc	Total module area	32.4 m ²
System Design	Estimate Subarray 1 configuration					
Shading and Layout	DC Sizing and Configuration To model a system with one array, specify properties parallel to a single bank of inverters, for each subarra					nected in
Grid Limits	-Electrical Configuration	Subarray 1	Subarray 2	Subarray 3	Subarray 4	
Lifetime and Degradation		(always enabled) 10	Enable	Enable	Enable	
System Costs	Strings in parallel in subarray	1	1			
Financial Parameters	Number of modules in subarray	10	10			
Incentives	String Voc at reference conditions (V) String Vmp at reference conditions (V)	378.0 305.0	378.0 305.0			
Electricity Rates		50510	56510			
Electric Load	-Tracking & Orientation					-
	Azimuun mu	Fixed	Fixed			
		1 Axis	0 1 Axis			
	W E i oi	⊖ 2 Áxis ⊖ Azimuth Axis	○ 2 Axis ○ Azimuth Axis			
		Seasonal Tilt	O Seasonal Tilt	Tilt a	and azimut	h angles
		Tilt=latitude	🗌 Tilt=latitude 🖊			
	Tilt (deg)	10	10			
	Azimuth (deg)	270	90			
	Ground coverage ratio (GCR)	0.3	0.3			
	Tracker rotation limit (deg)	45	45			

System design

System Size 5 kW, 1.2 DC/AC ratio


Inverter 4200 AC W Power-One PVI-4.2

Module 250 DC W Trina Solar TSM-250

String Size 10 modules

Array orientation

Two subarrays, 10 degree tilt, E-W facing

Run a simulation, refine the design

- Check System Design page for sizing messages.
- Read any simulation messages.
- Use Losses tab to identify potential sizing issues
 - Excessive clipping losses
 - Module-related losses

Use System Sizing macro to find alternate designs

- Generates a report of design and operating voltages based on simulation results and conventional design rules.
- Generates a list of modules that work given the system design.
- Try changing number of modules per string, or choosing different modules and inverters and compare macro results to find best design.

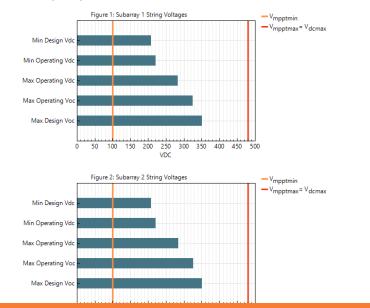
For example, try changing string length from 10 to 7 modules to refine design for fewer modules

System Sizing Information

modules per string

Table 4: Modules from the same manufacturer that meet the inverter voltage requirements. Table displays up to 50 modules that result in the highest rated string Voc.

Module	Array Power (kW)	Subarray 1 String Voc (VDC)	Subarray 2 String Voc (VDC)	Nameplate DC/AC Ratio
Trina Solar TSM-335DD06M.05(II)	4.69	284.90	284.90	1.12
Trina Solar TSM-335DD06M.15(II)	4.69	284.90	284.90	1.12
Trina Solar TSM-335DD06M.18(II)	4.69	284.90	284.90	1.12
Trina Solar TSM-335DE06M.T0(II)	4.69	284.90	284.90	1.12
Trina Solar TSM-335DEG6M.20(II)	4.69	284.90	284.90	1.12
Trina Solar TSM-340DEG6M.20(II)	4.76	287.70	287.70	1.13


Table 5: Modules from different manufacturers that meet the inverter voltage requirements. Table displays up to 50 modules that result in the highest rated string Voc.

Module	Array Power (kW)	Subarray 1 String Voc (VDC)	Subarray 2 String Voc (VDC)	Nameplate DC/AC Ratio
WINAICO WSP-340MX	4.77	284.20	284.20	1.14
Hanwha Q CELLS Q.PEAK DUO BLK-G6+ 340	4.76	284.90	284.90	1.13
LG Electronics Inc. LG335N1T-V5	4.69	284.90	284.90	1.12
LONGi Green Energy Technology Co Ltd. LR4-60HPB-355M	4.97	284.90	284.90	1.18

First macro run with 7 250 W modules per string suggests that 335 W modules would also work.

System Sizing Information

The figure(s) below show the inverter rated MPPT voltage range with worst case design maximum open-circuit voltage and minimum maximum-power voltage, along with the operating open circuit, minimum, and maximum voltages from the simulation results for each subarray in the system.

Second run with 7 335 W modules confirms that voltages are within inverter limits.

Power Purchase Agreement (PPA) Project

Installed, owned, and operated by a single owner or partnership.

Power from PV system sold to generate revenue.

Does project revenue cover installation and operating costs?

Ground coverage ratio (GCR) and self-shading

Create Detailed PV / Single Owner case: 20 MW system with 64,488 modules and 22 inverters.

Duplicate case with GCR = 0.9.

Compare results: They are the same.

On Shading and Layout page, enable self-shading with 2 x 12 rows.

Compare results: GCR = 0.9 has severe shading.

Use parametrics to plot annual energy vs. GCR.

External shading and snow losses

Import external shading data 3D Shade Calculator to generate shading data Snow model when data available in weather file

> "Modeling Shading Losses for PV Systems" https://sam.nrel.gov/photovoltaic/pv-videos

Ryberg, D.; Freeman, J. (2017). Integration, Validation and Application of a PV Snow Coverage Model in SAM. National Renewable Energy Laboratory. 33 pp. TP-6A20-68705. (<u>PDF 3.1 MB</u>)

P50 / P90 analysis

- On Location and Resource page, use Download Files for all years option to download weather files to a folder.
- Click P50/P90, and choose the folder.
- Click Run P50/P90
 simulations.

	One location One location						
	15013 Denver W Pkwy, Golden, CO	Defa	ult TMY file		~		
	For locations not covered by the NSRDB, click here to go to the	Cho	ult TMY file ose year mload files for	all years (P50/	(P90)		
* SAM 2020.2.29						- 1	
File 🗸 (+) Add untitl	ed 🗸						📃 Не
Photovoltaic, Residential	Run P50/P90 simulations > Select w	eather file folde	C:\Users\ga	obo\OneDrive\!	S Cus	tom Px:	7
Location and Resource		P10	P50	P90	P70.5	Min	Max
Marshila	A1AC (11/1/1)	7323.72	7005.48	6757.81	6894.92	6517.17	754
Module	Annual AC energy (kWh) Inverter clipping loss AC power limit (kWh/yr)	11.3607	7003.48	5,73585	6.52786	5.59489	/54
Inverter	Inverter clipping loss AC power limit (kwh/yr)	43.0467	42.0542	40.2832	41,3369	40.164	44.
Inverter	Inverter night time loss (kWh/yr)		42.0342	5,18918	5.21021	5.16516	5.2
System Design	Annual GHI (Wh/m2/yr)		1.68516e+06	1.61825e+06	1.64566e+06	1.55724e+06	1.79887
System Design	POA front-side irradiance total nominal (kWh/yr)	44740.4	42741.6	41290	41982.8	39578.7	46
Shading and Layout	POA front-side irradiance total nominal (kWh/yr)	30270.7	27642.7	25531.9	26682.6	25471.5	
	POA front-side irradiance total after shading (kWh/yr)	44740.4	42741.6	41290	41982.8	39578.7	46
Losses	POA front-side irradiance total after shading and soiling (kWh/yr)	42503.4	40604.5	39225.5	39883.6	37599.7	43
	POA front-side irradiance total after reflection (IAM) (kWh/yr)	41199	39339.2	37983.1	38619.7	36405.7	42
Grid Limits	POA irradiance total after reflection (IAM) (kWh/yr)	41199	39339.2	37983.1	38619.7	36405.7	42
	POA front-side irradiance beam after shading and soiling (kWh/yr)	28757.2	26260.6	24255.3	25348.5	24197.9	29
Lifetime and Degradation	Annual DC energy nominal (kWh/yr)	8467.27	8085.03	7806.32	7937.16	7482.15	87
	Annual DC energy gross (kWh/yr)	8001.34	7657.58	7388.64	7538.15	7131.86	82
System Costs	Annual DC energy (kWh/yr)	7646.07	7317.57	7060.57	7203.44	6815.19	78
Financial Parameters	Annual AC energy gross (kWh/yr)	7397.8	7076.35	6826.18	6964.67	6583.11	76
Financial Parameters	Subarray 1 Gross DC energy (kWh)	8001.34	7657.58	7388.64	7538.15	7131.86	82
Incentives	Subarray 1 DC mismatch loss (kWh)	160.027	153.152	147.773	150.763	142.637	16
incentives	Subarray 1 DC diodes and connections loss (kWh)	40.0067	38.2879	36.9432	37.6908	35.6593	41
Electricity Rates	Subarray 1 DC wiring loss (kWh)	160.027	153.152	147.773	150.763	142.637	16
	DC mismatch loss (kWh)	160.027	153.152	147.773	150.763	142.637	16
Electric Load	DC diodes and connections loss (kWh)	40.0067	38.2879	36.9432	37.6908	35.6593	41
	DC wiring loss (kWh)	160.027	153.152	147.773	150.763	142.637	16
	POA front-side reflection (IAM) loss (%)	3.17866	3.12353	3.05562	3.0743	3.05327	3.1
Simu Simu	DC module deviation from STC (%)	5.91725	5.47117	4.74014	5.04983	4.68162	6.0
Since Z	AC inverter power clipping loss (%)	0.15802	0.112647	0.0756202	0.0901618	0.0718418	0.17
Parametr Stochastic	AC inverter power consumption loss (%)	0.600996	0.574702	0.516129	0.549691	0.510073	0.64
	AC inverter night tare loss (%)	0.0729192	0.0713521	0.0667172	0.0692968	0.0659776	0.07
DE0 / D00 Macros		0.57455		2 52075			-

AC inverter efficiency loss (%)

2.57156

The NSRDB is a database of thousands of weather files that you can download and add to your to your solar resource libr (TMY) file for most long-term cash flow analyses, or choose files to download for single-year or P50/P90 analyses. See Help

"P50/P90 Analysis"

https://sam.nrel.gov/weather-data/weather-data-videos

ownload Weather File

2.576 🗸

2 54719

2.53381

Importing data from other models

- PVsyst OND PAN to SAM macro imports module, inverter, and weather data from PVsyst files
- Solar Resource File Converter macro imports weather data from PVGIS 5 and SolarAnywhere
- Use Generic System model to use a generation profile from a different model as input to SAM

Thank you!

www.nrel.gov

Array Layout Examples

Supporting Slides

Layout examples are in *pv-layout-examples-2020.2.29.sam* file

* SAM 2020.2.29: C:\Users\gaobo\OneDrive\SAM\PV\Sizing\Layout Examples\pv-layout-examples-2020-2-29.sam –					
File 🗸 🕂 Add 1 🗸	2 v 3 v 4 v 5 v 6 v 7 v 8 v ■	Help			
Photovoltaic, Residential	Cizing Summary	^			
Location and Resource	umber of inverters 1 Nameplate DC capacity 3.352 kWdc Number of modules 10				
Module	Size the syst Case numbers correspond to numbers in the	.2			
Inverter	Size the syst in parallel in Case numbers correspond to numbers in the	n			
System Design	□Estimate titles of the next few slides.				
Shading and Layout	DC Sizing are compared on To				
Losses	parallel to a single bank of inverters, for each subarray, check Enable and specify a number of strings and other properties.				
Grid Limits	-Electrical Configuration				
Lifetime and Degradation	(always enabled) Enable Enable Enable				
System Costs	Modules per string in subarray 4 6 Strings in parallel in subarray 1 1				
Financial Parameters	These examples use a small number of modules				
Incentives					
Electricity Rates	for clarity but the same concepts apply to large				
Electric Load	arrays with hundreds or thousands of modules.				
Simulate >	Vert. O 2 Axis O 1 Axis Vert. O 2 Axis O 2 Axis 270 Horz ⁰ O Azimuth Axis				
Parametrics Stochastic	S 180				
P50 / P90 Macros		~			

1: One string, one inverter, one MPPT

Photovoltaic, Residential	AC Sizing	Sizing Summary			
Location and Resource	Number of inverters 1	Nameplate DC capacity	1.341 kWdc	Number of modules	4
Module	DC to AC ratio 1.22	Total AC capacity	1.100 kWac	Number of strings	1
Inverter	Size the system using modules per string and strings in parallel inputs below.	Total inverter DC capacity	1.216 kWdc	Total module area	6.5 m²
System Design	Estimate Subarray 1 configuration				
Shading and Layout	DC Sizing and Configuration To model a system with one array, specify properties fo	r Subarray 1 and disable Subarrays 2-3	and 4. To model a system	with up to four subarrays coppe	ected in
					ceca in
Losses	parallel to a single bank of inverters, for each subarray,	check Enable and specify a number of s	trings and other properti	es.	
Losses Grid Limits		barray 1 Subarray 2	trings and other properti Subarray 3	es. Subarray 4	_
Grid Limits	-Electrical Configuration Su		5		-
Grid Limits Lifetime and Degradation	-Electrical Configuration Su	barray 1 Subarray 2	Subarray 3	Subarray 4	-
Grid Limits	-Electrical Configuration (al	barray 1 Subarray 2	Subarray 3	Subarray 4	-
Grid Limits Lifetime and Degradation	-Electrical Configuration	barray 1 Subarray 2	Subarray 3	Subarray 4	-
Grid Limits Lifetime and Degradation System Costs	- Electrical Configuration	barray 1 Subarray 2	Subarray 3	Subarray 4	-

2: Two identical strings, one inverter, one MPPT

"Identical strings" means both strings have same number of modules, orientation, tracking and shading, so both subarrays operate at same voltage.

atovaltaic Residenti

-	-	-	l
-	-	-	

Location and Resource	AC Sizing	Sizing Summary				
Module	Number of inverters 1	Namepla	te DC capacity	2.682 kWdc	Number of modules	8
Module	DC to AC ratio 1.06	То	tal AC capacity	2.530 kWac	Number of strings	2
Inverter	Size the system using modules per string and strings in parallel inputs below.	Total inver	ter DC capacity	2.620 kWdc	Total module area	13.0
System Design						
Shading and Lavout	Estimate Subarray 1 configuration					
Shading and Layout	DC Sizing and Configuration					
Losses	To model a system with one array, specify properties for parallel to a single bank of inverters, for each subarray,					nected in
Grid Limits		ubarray 1	Subarray 2	Subarray 3	Subarray 4	
Lifetime and Degradation	-Electrical Configuration (a)	lways enabled)	Enable	Enable		
System Costs					Enable	
	Modules per string in subarray	4			🗌 Enable	
Financial Devenuetors	Modules per string in subarray Strings in parallel in subarray	4			🗌 Enable	
Financial Parameters		4 2 8			🗌 Enable	
Financial Parameters	Strings in parallel in subarray	4 2 8 271.6			🗌 Enable	

3: Two different strings, one inverter, one MPPT

"Different strings" could have different number of modules, and/or different orientation, tracking, or shading.

Inverter DC voltage is either average of subarray voltages, or if you enable it, calculated using voltage mismatch option.

Photovoltaic, Residential	AC Sizing	Sizing Summary				
Location and Resource	Number of inverters 1	Namep	late DC capacity	3.352 kWdc	Number of modules	10
Module	DC to AC ratio 1.10	Т	otal AC capacity	3.040 kWac	Number of strings	2
Inverter	Size the system using modules per string and strings in parallel inputs below.	Total inve	rter DC capacity	3.136 kWdc	Total module area	16.3 m²
System Design	Estimate Subarray 1 configuration					
Shading and Layout	DC Sizing and Configuration To model a system with one array, specify properties f					nnected in
Losses	parallel to a single bank of inverters, for each subarray	ι, check Enable and sp	pecify a number of string	gs and other propert	ies.	
200000						
Grid Limits	-Electrical Configuration S	Subarray 1	Subarray 2	Subarray 3	Subarray 4	
Grid Limits	-Electrical Configuration	always enabled)	Subarray 2 ✓ Enable	Subarray 3	Subarray 4	
Grid Limits Lifetime and Degradation	-Electrical Configuration	,	,	,	,	
Grid Limits	-Electrical Configuration	,	,	,	,	
Grid Limits Lifetime and Degradation	-Electrical Configuration (a Modules per string in subarray	,	,	,	,	
Grid Limits Lifetime and Degradation System Costs Financial Parameters	-Electrical Configuration (a Modules per string in subarray Strings in parallel in subarray	,	,	,	,	
Grid Limits Lifetime and Degradation System Costs	-Electrical Configuration (a Modules per string in subarray Strings in parallel in subarray Number of modules in subarray	always enabled) 4 1 4	✓ Enable 6 1 6	,	,	

PV Subarray Voltage Mismatch Option

V Subarray Voltage Mismatch

-Subarray Voltage Mismatch Calculation

When subarrays have different orientations, modules in each subarray are exposed to different levels of solar radiation and wind speed, which results in different subarray cell temperatures and maximum power point voltages (Vmp). The voltage mismatch causes electrical losses and an inverter input voltage less than Vmp. By default, SAM estimates the inverter input voltage by averaging the subarray Vmp values.

If you are using the CEC or IEC 61853 module model, SAM can more accurately estimate the inverter input voltage. This option requires longer simulation times to calculate mismatch losses. This more accurate method generally results in lower system output than the default method. See Help for details.

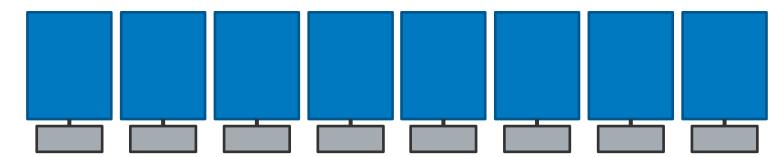
Calculate maximum power voltage for array and associated losses due to subarray mismatch (CEC and IEC 61853 models only)

Use this option (at the bottom of the System Design page) with two or more subarrays connected to a single inverter MPPT input when the subarrays have different string lengths or orientations, and you want a more precise estimate of inverter input voltage than the average of subarray voltages.

4: Two different strings, one inverter, two MPPTs

Photovoltaic, Residential	Inverter CEC Data	ase 🗸												
ocation and Resource			_											
Iodule	Filter:	Name ~			_							H H	-	
iverter	Name SMA America: SB3.0-1	TP-US-40 [208V]	Paco Pdco 3030 3137.374	Pso 26.673	Pnt 0.909	Vac Vdcmax 208 480	Vdco Mppt_h 365 480	igh Mppt_low 0 155 ·						
/stem Design	SMA America: SB3.0-1 SMA America: SB3.0-1	TP-US-41 [208V]	3040 3135.798 3028 3135.288	26.710	0.9	240 480 208 480	36. 480 365 480	155 - 155 -						Ы
ading and Layout	SMA America: SB3.0-1 SMA America: SB3.8-1		3036 3131.658 3600 3723.102		0.9 1.08	240 480 208 480	365 180 365 0	155 · 195 ·						15
osses	Efficiency Curve and	Characteristics									H	h h		
irid Limits		A America: SB3.0-1TP	9-US-41 [240V]		Т	Number of M	/IPPT inputs	2 Fur						
Photovo	oltaic, Residential	AC Sizing				Sizing S	ummary———	Fur						
Location a	and Resource	Numł	per of inverters		1		Nameplate D0	C capacity	3.352 kWdc	Number of modules	10			
Module			DC to AC ratio	1.7	10		Total AC	C capacity	3.036 kWac	Number of strings	2			
Inverter		Size the system in parallel input		per string ar	nd string	js -	Total inverter DO	C capacity	3.132 kWdc	Total module area	16.3 m²	_		
System D	esign	Estimate Sub	array 1 configu	rat Ea	ch	strin	ig ope	erates	at a d	ifferent volt	age.			
Ŭ	ind Layout		em with one arr	ay, specify p	ropertie	s for Subarray	1 and disable S	ubarrays 2, 3, and		em with up to four subarrays conn				
Losses						Subarray 1	Sul	barray 2	Subarray 3	Subarray 4				
Grid Limit	S	-Electrical Conf	-					-			-			
Lifetime a	nd Degradation	Set sub	arrays for multi			(always enab	oled)	Enable	Enable	Enable				
System Co	osts			er string in s parallel in s			4	1						
· · · · · · · · · · · · · · · · · · ·			Number of i	· · · · · · · · · · · · · · · · · · ·			4	6						
Financial F	Parameters	Sti	ring Voc at refe				271.6	407.4						
Incentives	5		ng Vmp at refe				229.2	343.8						
Electricity	Rates		Inverter MPP	T input for s	ubarray		1	2					NF	REL

5: Three strings (two identical), two inverters, one MPPT


subarray v	C voltage is either a oltages, or if you ei using voltage misn	nable i	t,				-	-	
Photovoltaic, Residential	rAC Sizing		/						」⋿
Location and Resource	Number of inverters 2	Name	plate DC capacity	4.693 kWdc	of				
Module	DC to AC ratio 1.12		Total AC capacity	4.200 kWac					
Inverter	Size the system using modules per string and strings in parallel inputs below.	Total inv	rerter DC capacity	4.530 kWdc	Total module area	22.8 m²			
System Design	Estimate Subarray 1 configuration					- 1			
Shading and Layout	DC Sizing and Configuration To model a system with one array, specify properties parallel to a single bank of inverters, for each subarra					ted in			
Losses	parallel to a single bank of inverters, for each subarra	y, check enable and	specify a number of str	ings and other propert	es.	- 1			
Grid Limits	-Electrical Configuration	Subarray 1	Subarray 2	Subarray 3	Subarray 4				
Lifetime and Degradation		(always enabled)	✓ Enable	Enable	Enable	- 1			
System Costs	Modules per string in subarray Strings in parallel in subarray	2	6]					
Financial Parameters	Number of modules in subarray	8	6]					
Incentives	String Voc at reference conditions (V) String Vmp at reference conditions (V)	271.6 229.2	407.4 343.8]					NREL 42

6: Three strings (two identical), one inverter, two MPPTs

Both strings of Subarray 1 operate at same voltage, string of Subarray 2 operates at its own voltage.

Photovoltaic, Residential	AC Sizing	Sizing Summary	1			
Location and Resource	Number of inverters 1	Name	plate DC capacity	4.693 kWdc	Number of mo	H 1
Module	DC to AC ratio 1.16		Total AC capacity	4.050 kWac	Number of s	
Inverter	Size the system using modules per string and string in parallel inputs below.	5 Total inv	erter DC capacity	4.243 kWdc	Total module and	
System Design	Estimate Subarray 1 configuration					
Shading and Layout	DC Sizing and Configuration To model a system with one array, specify properties					nnected in
lossos	parallel to a single bank of inverters, for each subarra	ay, check Enable and s	specify a number of string	gs and other properti	ies.	
LOSSES						
	-Electrical Configuration	Subarray 1	Subarray 2	Subarray 3	Subarray 4	_
Losses Grid Limits Lifetime and Degradation	-Electrical Configuration	Subarray 1 (always enabled)	Subarray 2	Subarray 3	Subarray 4	-
Grid Limits	-Electrical Configuration					-
Grid Limits Lifetime and Degradation	-Electrical Configuration Set subarrays for multiple MPPT					-
	-Electrical Configuration Set subarrays for multiple MPPT Modules per string in subarray	(always enabled)				_
Grid Limits Lifetime and Degradation System Costs Financial Parameters	-Electrical Configuration Set subarrays for multiple MPPT Modules per string in subarray Strings in parallel in subarray	(always enabled)				_
Grid Limits Lifetime and Degradation System Costs	-Electrical Configuration Set subarrays for multiple MPPT Modules per string in subarray Strings in parallel in subarray Number of modules in subarray	(always enabled) 4 2 2 2 2 2 271.6	Enable 6			-

8: Microinverters

Photovoltaic, Residential	AC Sizing	Sizing Summary			
Location and Resource	Number of inverters 8	Nameplate DC capacity	2.003 kWdc	Number of modules	8
Module	DC to AC ratio 1.04	Total AC capacity	1.920 kWac	Number of strings	8
Inverter	Size the system using modules per string and strings in parallel inputs below.	Total inverter DC capacity	2.005 kWdc	Total module area	13.1 m²
System Design	Estimate Subarray 1 configuration				
Shading and Layout	DC Sizing and Configuration To model a system with one array, specify properties fo	r Subarray 1 and disable Subarrays 2, 3	, and 4. To model a sytem	with up to four subarrays connec	ted in
			and the second		
Losses	parallel to a single bank of inverters, for each subarray,	check Enable and specify a number of	strings and other propertie	:5.	
Losses Grid Limits		check Enable and specify a number of barray 1 Subarray 2	strings and other propertie Subarray 3	subarray 4	
Grid Limits	-Electrical Configuration Su		· · ·		
	-Electrical Configuration Su	barray 1 Subarray 2	Subarray 3	Subarray 4	
Grid Limits	-Electrical Configuration (al	barray 1 Subarray 2	Subarray 3	Subarray 4	
Grid Limits Lifetime and Degradation	-Electrical Configuration	barray 1 Subarray 2	Subarray 3	Subarray 4	
Grid Limits Lifetime and Degradation System Costs	-Electrical Configuration (al Modules per string in subarray Strings in parallel in subarray	barray 1 Subarray 2	Subarray 3	Subarray 4	

For microinverters, be sure to set module mismatch loss on Losses page

Losses	DC Losses				
Grid Limits	DC losses apply to the electrical output	ch subarray and ac	count for losses not calculated by	the module performar	nce model.
Lifetime and Degradation	Module mismatch (%)	0	0	0	0
	Diodes and connections (%)	0.5	0.5	0.5	0.5
System Costs	DC wiring (%)	2	2	2	2
Financial Parameters	Tracking error (%)	0	0	0	0
1	Nameplate (%)	0	0	0	0
Incentives	DC power optimizer loss (%)	0	All four subarrays are subject to	o the same DC power op	ptimizer loss.
Electricity Rates	Total DC power loss (%)	2.490	2.490	2.490	2.490
Electric Load	- Default DC Losses Apply default losses to replace DC losses fo	-	% * [1 - the product of (1 - loss/100%)] default values.		
	Apply default los	ses for: Ce	ntral inverters N	licroinverters	DC optimizers

Financial Models

Supporting Slides

Residential PV system

Installed, owned, operated by a residential homeowner.

Power from system reduces homeowner's monthly electricity bill.

Is a project economically feasible given its cost and energy production?

Financial model overview

Power Purchase Agreement (PPA)

Sell power to generate revenue Power price is fixed with optional escalation and time-of-delivery adjustments

Distributed

On customer side of electricity meter Reduce customer's electricity bill

Merchant Plant

Sell power at market prices

LCOE Calculator

Calculate levelized cost of energy using simple fixed-charge-rate method.

- Power Purchase Agreement
 Single Owner
 Partnership Flip with Debt
 Partnership Flip without Debt
 Sale Leaseback
- Distributed
 Residential Owner
 Commercial Owner
 Third Party Owner Host
 Third Party Host / Developer
 Merchant Plant
 LCOE Calculator (FCR Method)
 No Financial Model

Commercial PV System

Installed, owned, and operated by business owner.

Power from PV system reduces business owner's electricity bill.

Is a project economically feasible given its cost and energy production?

Third party ownership for projects with a developer who owns the system and a host who uses the power:

Host: Compare lease to power purchase agreement (PPA) option from the host (building owner) perspective.

Host / Developer: Calculate "host indifference point," or PPA price that developer would have to charge to make project feasible.

Other distributed financial models

Power Purchase Agreement (PPA) Project

Installed, owned, and operated by a single owner or partnership.

Power from PV system sold to generate revenue.

Does project revenue cover installation and operating costs?

