

Power Purchase Agreement Financial Models in SAM 2013.1.15

SAM Webinar

Paul Gilman

June 19, 2013

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

- Short demonstration in SAM
- Overview of SAM financial models
- SAM PPA model metrics
- Troubleshooting PPA model results

- What is the difference between Utility IPP and Single Owner model?
- Why is the energy term in the LCOE equation discounted?
- What is the difference between nominal and real LCOE?
- If I set the discount rate to the IRR, will the NPV be zero?
- What value should I choose for the discount rate?
- Why does SAM calculate the LCOE using revenue instead of cost?

Overview of SAM's Financial Models

SAM can model two types of projects

• Distributed – Customer side of meter Buy and sell electricity at retail rates

- Net present value (NPV)
- Payback period
- Levelized cost of energy (LCOE)
- PPA Power generation project
 Sell electricity at a price negotiated through a power purchase agreement
 - PPA price
 - Internal rate of return (IRR)
 - o NPV
 - LCOE is "levelized PPA price"

Residential lease: Coming soon to SAM?

- SAM 2013.1.15
- SAM's distributed financial models assume that the building owner purchases the system
- The Commercial PPA financial model is from the perspective of the company offering the lease
 - "What PPA price must the lessor negotiate to cover its costs?"
- The current version of SAM *cannot* evaluate questions from the perspective of the building owner
 - o "Is it better to lease or buy a project in terms of NPV?"
 - o "Is it better to pay all of the lease up front?"
 - "What impact do changes in inflation, PPA price escalation, discount rate, etc. have on the answers to these questions?"

We would like to add a model for residential lease and are pursuing funding options

Photo by Spire Solar Chicago NREL 632223

PPA project sells all electricity to the grid

2 MW photovoltaic facility near an airport in Prescott, Arizona

Photo by Arizona Public Service NREL 13338

Residential

 Debt with tax deductible or non-tax deductible loan payments

Commercial

- Tax deductible loan payments
- Depreciation options

• Commercial PPA and Utility IPP

- A single owner builds and operates the project
- Utility IPP option offers financial constraints to help ensure SAM can find solution
- Debt fraction is an input

Advanced financial models

- Single Owner: Like Utility IPP, but with reserve accounts, and SAM calculates debt fraction
- Partnership Flip: Tax investor and developer share cost and benefit of project, Benefits go to developer after "flip year"
- Sale Leaseback: Tax investor purchases project from developer and leases it back to the developer

What are the main differences between the Utility IPP and Single Owner models?

Utility IPP

IRR: The IRR is over the entire analysis period

Project term debt: You specify the debt fraction

Constraints: You can choose options to constrain PPA price solution

- Automatically optimize debt fraction and/or PPA price escalation
- Force positive cash flow and minimum DSCR

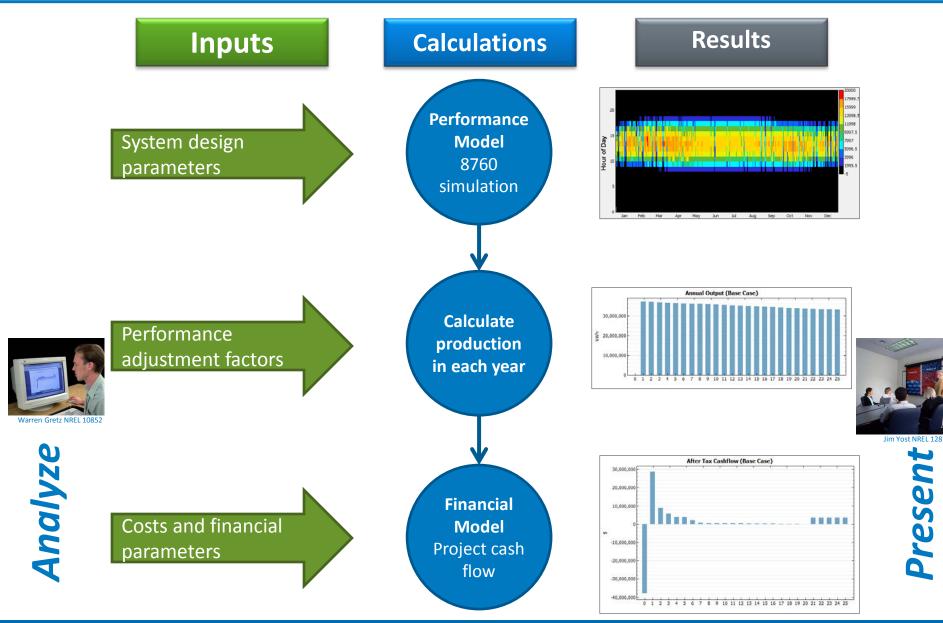
Single Owner

IRR: You can specify a target year for the IRR

Project term debt: You specify a debt-service coverage ratio (DSCR), and SAM calculates the debt fraction

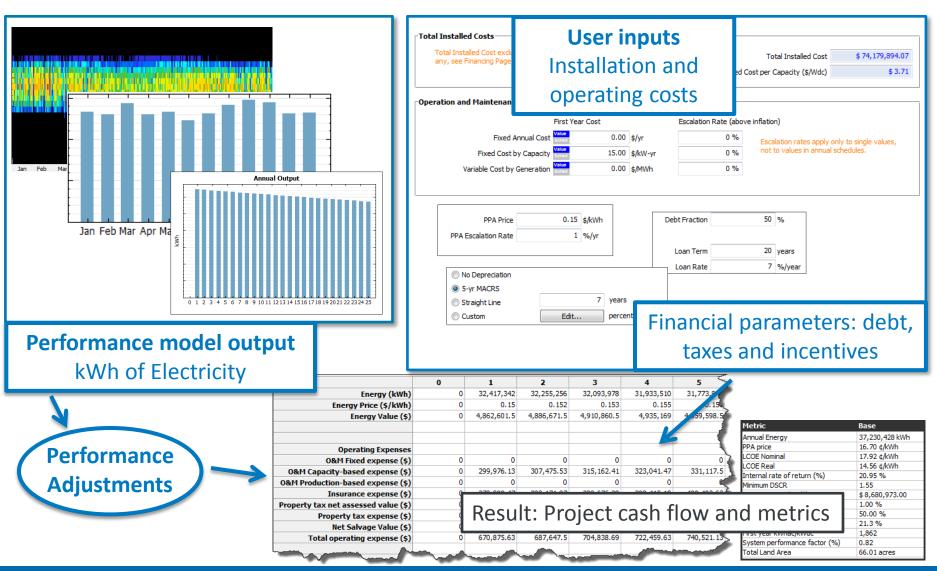
Reserve accounts: Reserve accounts for funds to cover equipment replacement, capital reserves, and debt service reserves

Compare the Financing page for the two models to see the differences.



• Models are general pro forma models

- Enough detail for pre-feasibility project evaluation
- Simple enough to generate quick results
- PPA Commercial, Utility IPP, and Single Owner all make the following assumptions
 - A single entity builds, owns, and operates the project
 - The project has sufficient tax liability to benefit from tax credits
- Partnership and Sale Leaseback models are simplified representations of actual partnership agreements


Anatomy of a SAM Model Run

NATIONAL RENEWABLE ENERGY LABORATORY

Financial model inputs include energy (kWh), costs (\$), and financial parameters

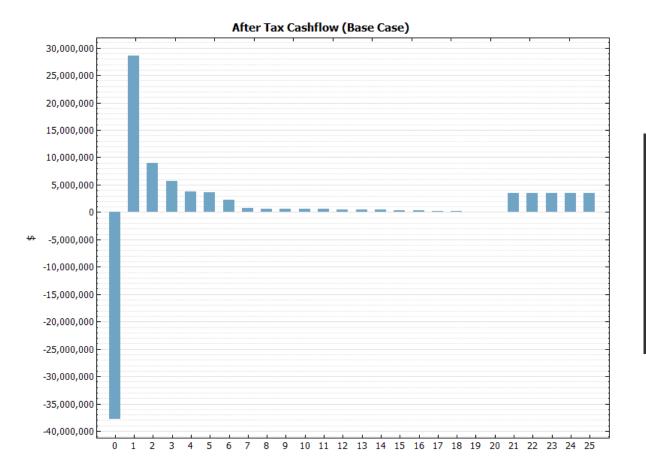
SAM 2013.1.15

PPA Model Metrics

Each of SAM's PPA financial models reports a set of interdependent metrics and a project cash flow

PPA price and LCOE, cents/kWh PPA price escalation rate Internal Rate of Return, %/year Net Present Value, \$ Debt service coverage ratio (DSCR) Debt Fraction

Avoid evaluating a single metric!Evaluate the metrics as a set


Metric	Base		
Annual Energy	37,230,428 kWh		
PPA price	16.70 ¢/kWh 🔍		
LCOE Nominal	17.92 ¢/kWh		
LCOE Real	14.56 ¢/kWh		
Internal rate of return (%)	20.95 %		
Minimum DSCR	1.55		
Net present value (\$)	\$ 8,680,973.00 🔘		
Calculated ppa escalation (%)	1.00 %		
Calculated debt fraction (%)	50.00 %		
Capacity Factor	21.3 %		
First year kWha	,862		
System perform Utility IPP	.82		
Total Land Area	5.01 acres		

Metric	Base
Annual Energy	32,417,342 kWh
PPA price	19.91 ¢/kWh 🔍
LCOE Nominal	21.37 ¢/kWh
LCOE Real	17.36 ¢/kWh
IRR target year	20
IRR target	11.00 %
IRR actual year	20
IRR in target year	11.00 %
After-tax IRR	12.64 % \$ 1,703,819.88
After-tax NPV	\$ 1,703,819.88 🔘
PPA price escalation	1.00 %
Debt fraction	51.43 %
Direct Cost	\$65,885,992.56
Indirect Cost	\$8,293,901.51
Financing Cost	\$ 5,408,657.93
Total project cost	\$ 79,588,552.00
Total debt	\$ 40,928,888.00
Total equity	\$ 38,659,664.00
Capacity Factor	18.5 %
First year kW	
System perfor Single O	wner
Total Land Ar	res

Metric	Base			
Annual Energy	32,417,342 kWh			
PPA price	17.23 ¢/kWh 🔵			
LCOE Nominal	18.50 ¢/kWh			
LCOE Real	15.02 ¢/kWh			
IRR target year	20			
IRR target	11.00 %			
IRR actual year	20			
IRR in target year	11.00 %			
After-tax tax investor IRR	11.07 %			
After-tax tax investor NPV	\$ 308,151.84 🛛 🔍			
After-tax developer IRR	-0.86 %			
After-tax developer NPV	\$ -17,795,588.0			
PPA price escalation	1.00 %			
Direct Cost	\$65,885,992.56			
Indirect Cost	\$8,293,901.51			
Financing Cost	\$ 4,344,433.93			
Total project cost	\$ 78,524,328.00			
Total equity	\$78,524,328.00			
Capacity Factor	18.5 %			
First year k				
System per Partnership Flip				
Total Land	es			

SAM calculates financial metrics from the cash flow

Metric	Base			
Annual Energy	37,230,428 kWh			
PPA price	16.70 ¢/kWh 🛛 🔍			
LCOE Nominal	17.92 ¢/kWh			
LCOE Real	14.56 ¢/kWh			
Internal rate of return (%)	20.95 %			
Minimum DSCR	1.55			
Net present value (\$)	\$ 8,680,973.00 🔘			
Calculated ppa escalation (%)	1.00 %			
Calculated debt fraction (%)	50.00 %			
Capacity Factor	21.3 %			
First year kWha	,862			
System perform Utility IPP	.82			
Total Land Area	5.01 acres			

Include the cash flow in your evaluation of the metrics.

Cash flow

The net after-tax annual benefit (positive) or cost (negative) to the project

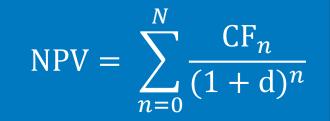
- Year zero value accounts for initial investment, incentives, and construction financing cost
- Years 1 and later account for revenue, expenses, taxes, incentives, and debt costs
- From project perspective, and from each partner's perspective as applicable

$$CF_0 = B_0 - C$$

$$F_n = P_n \times Q_n + B_n - C_n$$

 $C_n = C_1 \times (1+i)^n$

- You specify costs in Year 1 \$, SAM applies inflation to calculate out-year values
- SAM does not apply inflation to revenue. Use the PPA escalation rate to inflate revenue.


CF = after-tax cash flow in \$, B = Project benefit in \$, C = Project cost in \$ P = PPA price, n = year, Q = Energy in kWh, i = annual inflation rate

Net Present Value (NPV)

The present value of the after-tax cash flow (CF_n) over the analysis period (N) discounted at the nominal discount rate (d)

- A negative value may indicate a financially infeasible project
- From project perspective, and from each partner's perspective as applicable
- SAM applies inflation to costs, but not to revenue. Use the PPA escalation rate to inflate revenue

NPV =
$$CF_0 + \sum_{n=1}^{N} \frac{P_n \times Q_n + B_n - C_n}{(1+d)^n}$$

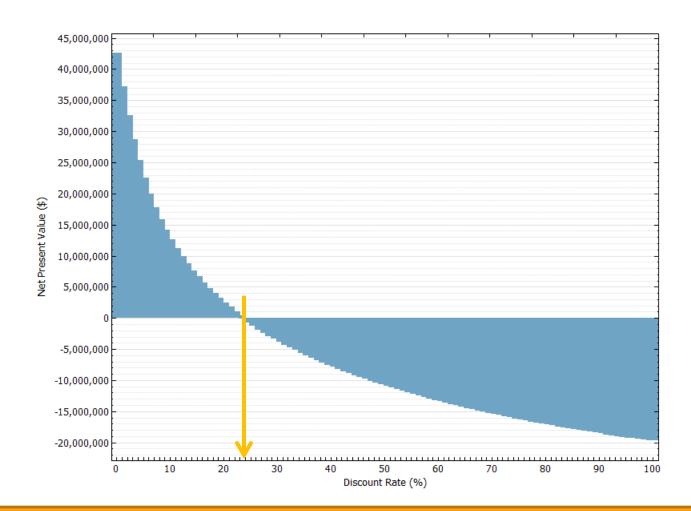
 $CF = after-tax \ cash \ flow \ in \ \$, \ P = PPA \ price, \ Q = Energy \ in \ kWh, \ B = Project \ benefit \ in \ \$, \ C = Project \ cost \ in \ \$, \ n = year, \ N = analysis \ period \ in \ years, \ d = nominal \ discount \ rate$

Internal Rate of Return (IRR)

The nominal discount rate that, when applied to the after-tax cash flow (Cn) over the analysis period (N), results in a net present value of zero

- From project perspective
- For partnership and sale lease back models, also from each partner's perspective

 $NPV = \sum_{n=0}^{N} \frac{CF_n}{(1 + IRR)^n} = 0$

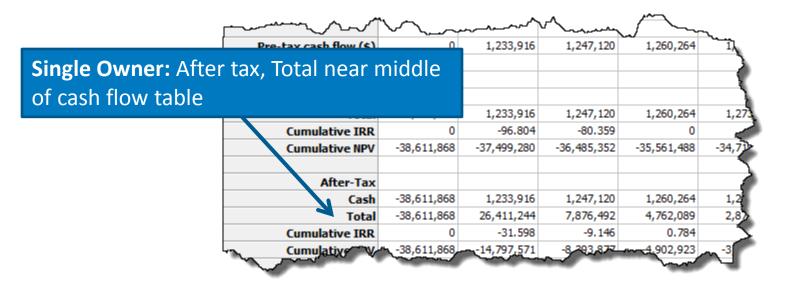

NPV =
$$CF_0 + \sum_{n=1}^{N} \frac{P_n \times Q_n + B_n - C_n}{(1 + \text{IRR})^n} = 0$$

 $CF = after-tax \ cash \ flow \ in \ \$, \ P = PPA \ price, \ Q = Energy \ in \ kWh, \ B = Project \ benefit \ in \ \$, \ C = Project \ cost \ in \ \$, \ n = year, \ N = analysis \ period \ in \ years, \ d = nominal \ discount \ rate$

IRR is the nominal discount rate that results in an NPV of

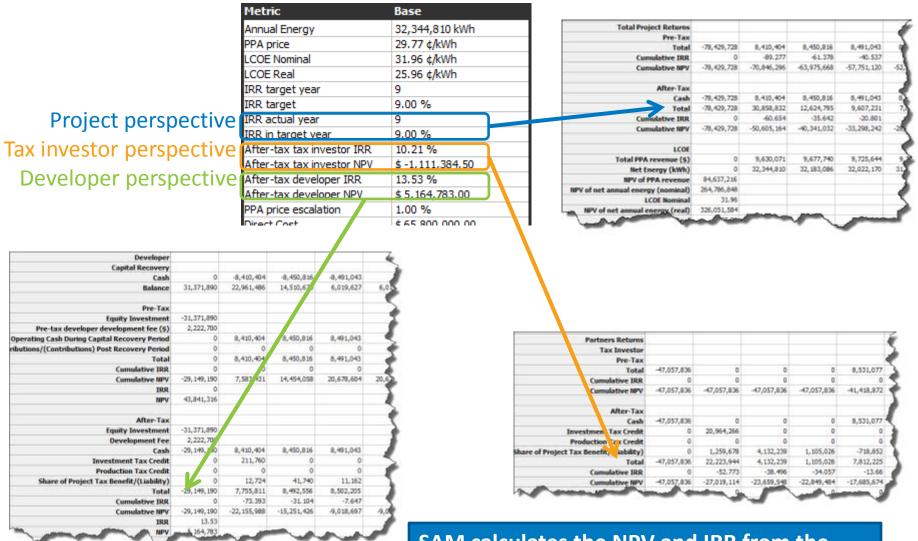
To create this graph in SAM: Set the inflation rate to zero so that the real and nominal discount rates are equal, and set up a parametric analysis on Real Discount Rate with values ranging from 0 to 100% in increments of 10%

SAM calculates the NPV and IRR from the after-tax cash flow



SAM 2013.1.15

_ ^


Utility IPP and Commercial PPA: After tax net equity cash flow, toward bottom of cash flow table

		/- ~~~		$\rightarrow \land \land$		Ann.
Federal depré	ciation (\$)	0	12,847,206	20,555,530	12,333,318	7,3
Federal Income	e Taxes (\$)	0	-3,240,001.5	-5,723,512	-3,020,249.75	-1,380
Federal tax s	savings (\$)	0	25,911,542	5,723,512	3,020,249.75	1,386,
After tax net equity ca	sh flow (\$)	-37,785,900	28,579,892	8,939,922	5,669,018.5	3,696,7
			_			
	Batia.	~~~~~			and the second second	

For partnership and sale-leaseback models, SAM calculates the metrics for the project and each party's perspective

SAM calculates the NPV and IRR from the total after-tax cash flow for each perspective.

- Price paid to the project for electricity it delivers to the grid
- May be modified by a set of TOD factors
- May be an input or result:

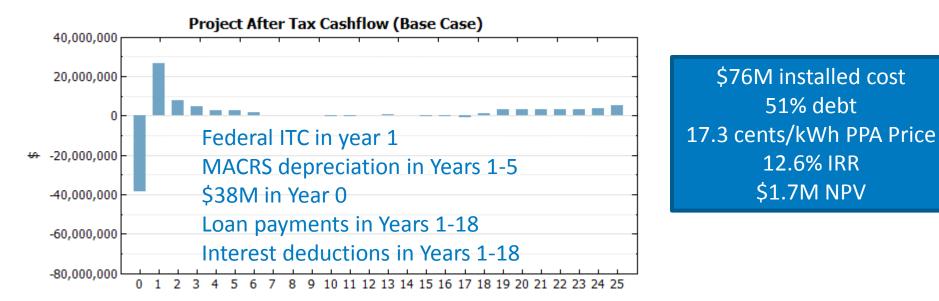
Specify PPA Price You specify the price, and SAM calculates the IRR Specify IRR Target You specify a target IRR, and SAM finds the PPA price that results in that IRR

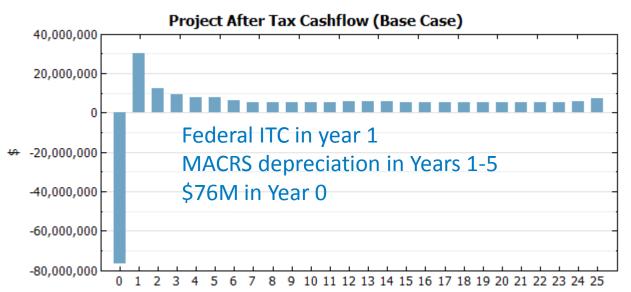
PPA Price Escalation Rate

- SAM reports the PPA price in the Metrics table as a first year value
- You can apply an optional escalation rate to the PPA price
 - $_{\odot}\,$ SAM does not apply inflation to the PPA price

Metrics ta	ble									
Metric		Base								
Annual Energy PPA price LCOE Nominal LCOE Real Internal rate of ret		32,417,342 kWh 19.17 ¢/kWh 20.59 ¢/kWh 16.72 ¢/kWh	This ex	cample s	hows th	e effect	of a 1%	PPA esca	lation ra	ate
Minimum DSCR Net present value (Calculated ppa esca	View and export data: Graphs Tables S Cash Flows Time Series Loss Diagram									
Calculated debt fra	Copy to clipbo	ard Save as CSV	Send to Excel	Send to Excel w	ith Equations			Projec	t cash flo	DW
Capacity Factor First year kWhac/k			0	1	2	3	4	5	6	,
System performance		Energy (kWh)			32,255,256	32,093,978	31,933,510	31,773,842	31,614,972	31,45
Total Land Area		Energy Price (\$/kWh) Energy Value (\$)		0.192	0.194 6,246,489.5	0.196 6,277,409	0.198 6,308,482.5	0.2 6,339,709.5	0.202 6,371,091	6,40

The next version of SAM will allow you to specify a different PPA price for each year.




- Debt fraction is the ratio of amount borrowed to the total installed cost
- Debt service coverage ratio (DSCR) is the ratio of operating income to expenses in each year
- For Commercial PPA and Utility IPP models, debt fraction is an input
 - You can have SAM optimize the debt fraction for you
 - DSCR for each year is a result in the cash flow table
 - Minimum DSCR is a result in the Metrics table

• For single owner, partnership and sale leaseback models, DSCR is an input

- Debt fraction is a result that depends on DSCR and debt terms
- Models assume constant DSCR

Flat Plate PV and Single Owner financing with and without deb

\$76M installed cost 0% debt 17.3 cents/kWh PPA Price 6.89% IRR -\$13M NPV

SAM 2013.1.15

The levelized cost of energy (LCOE) definition

The value in \$/kWh, which, if multiplied by energy in kWh generated (or saved) over the project life, equals the present value of the project in \$

$$\sum_{n=1}^{N} \frac{Q_n \times \text{LCOE}}{(1+d)^n} = \sum_{n=0}^{N} \frac{CF_n}{(1+d)^n}$$

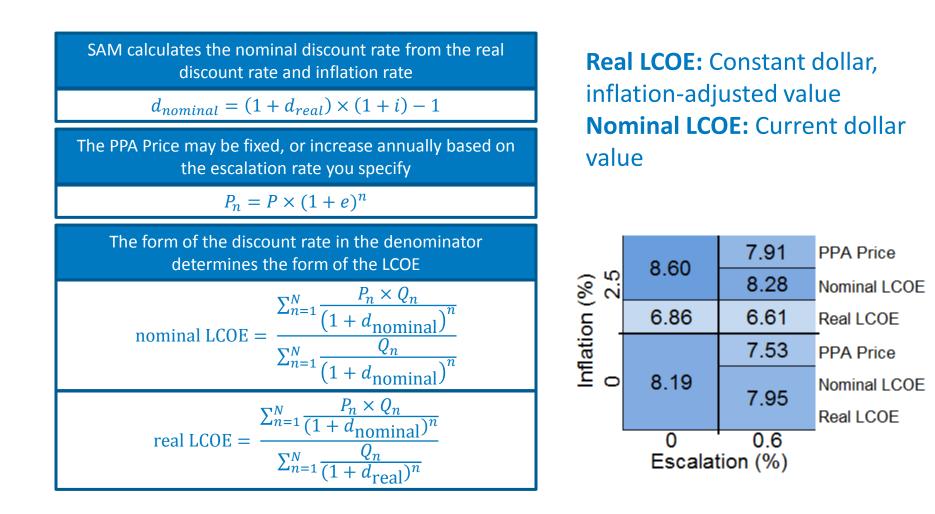
Cost of installing, financing and operating the system per unit of energy over the project life in \$/kWh Energy is electricity Accounts for: Installation costs

LCOE =
$$\frac{\sum_{n=0}^{N} \frac{CF_{n}}{(1+d)^{n}}}{\sum_{n=1}^{N} \frac{Q_{n}}{(1+d)^{n}}}$$

 $\label{eq:Q} Q = energy \ in \ kWh, \ CF = after-tax \ cash \ flow \ in \ \$ \\ n = year, \ N = analysis \ period \ in \ years, \ d = annual \ discount \ rate$

Operating costs

Electric energy generated



Amount the project must receive for each unit of energy (\$/kWh) to cover costs and project IRR requirements Accounts for: Installation costs Operating costs Electric energy generated Additional revenue required to meet target IRR

$$LCOE = \frac{\sum_{n=1}^{N} \frac{P_n \times Q_n}{(1+d)^n}}{\sum_{n=1}^{N} \frac{Q_n}{(1+d)^n}}$$

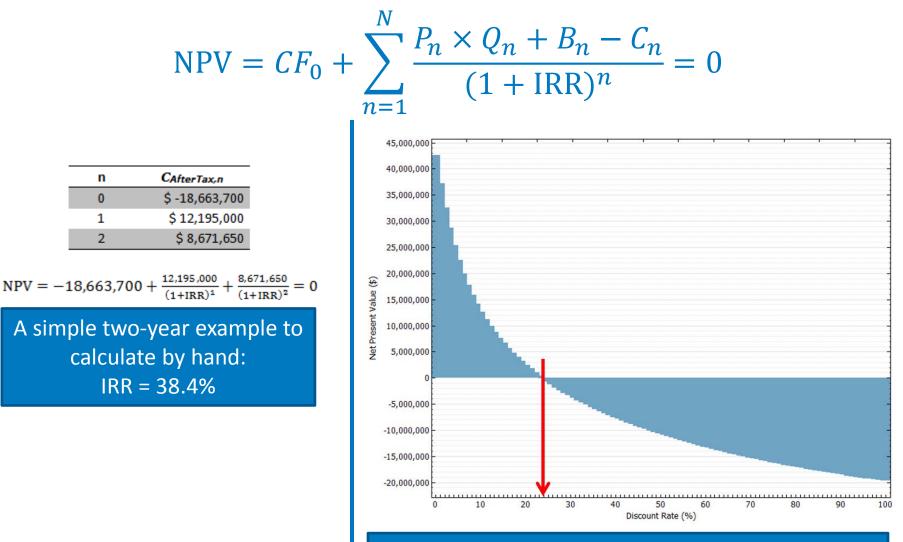
Q = energy in kWh, P = PPA price in \$/kWhn = year, N = analysis period in years, d = annual discount rate

d = annual discount rate, i = inflation rate, P = PPA price in kWh, e = PPA price escalation rate Q = energy in kWh, n = year, N = analysis period in years

- They are pro forma cash flow models from the project perspective
- They use hourly output values calculated by the performance model to represent power production in Year 1
 - Optional performance adjustment factors can adjust Year 1 production to estimate effects of annual degradation, system availability, curtailment, etc.
- You provide input values for installation and operating costs, financial parameters, and incentives
- Different models generate different metrics, but all show LCOE, PPA price, IRR, and NPV
- You should evaluate the metrics as a set

Troubleshooting PPA Model Results

The financial model results may not be valid for different reasons


- Your assumptions are for a financially infeasible project
 - Negative NPV
 - IRR much greater than the desired target
 - o IRR is zero

• SAM could not find a solution

o PPA Price = 400 cents/kWh (maximum limit)

Calculating the IRR from a given PPA price is fairly straightforward

You can use a parametric analysis on discount rate in SAM to see how it determines the IRR

Calculating a PPA price to meet a desired minimum IRR is not trivial

Operating Income = Energy Value - Operating Costs

Energy Value (\$) = Energy (kWh) × Energy Price (\$/kWh)

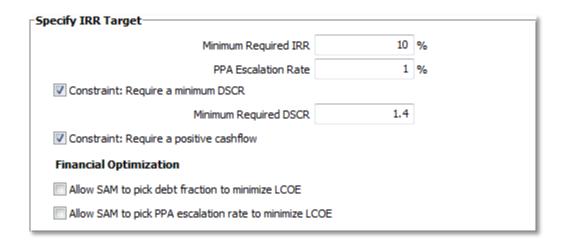
Operating Costs = Fixed O&M Annual + Fixed O&M + Variable O&M + Fuel + Insurance + Property Taxes - Salvage Value

- Calculate after-tax cash flow based on initial PPA price guess
- 2. Solve for IRR

NPV =
$$\sum_{n=0}^{N} \frac{CF_n}{(1 + IRR)^n} = 0$$

- 3. If resulting IRR is less than minimum target, increase PPA price guess
- 4. Repeat Steps 2 and 3 until IRR is within an acceptable tolerance

Utility IPP constraints help ensure that the algorithm finds a reasonable solution



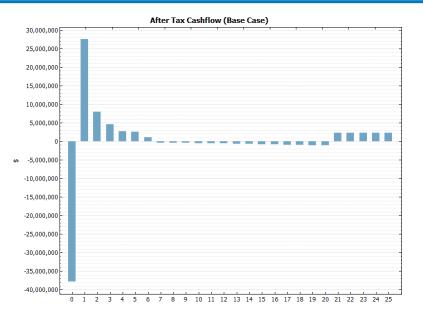
• Require a minimum DSCR

 Forces PPA price to be high enough to ensure the minimum DSCR value you specify

• Require a positive cash flow

 Forces the PPA price to be high enough to ensure a positive cash flow in all years

Scenario 1: Negative NPV


Symptoms:

- Reasonable PPA price
- Meets target IRR
- Reasonable minimum DSCR
- Negative NPV

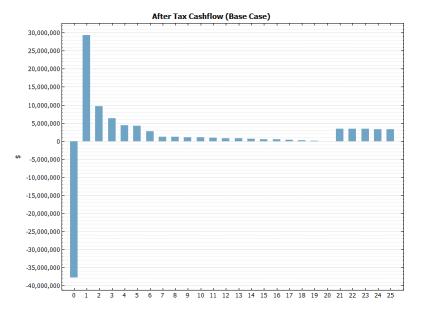
Project income insufficient to cover initial investment.

Possible solutions:

- Increase debt (decreases initial investment, increases tax savings)
- Decrease operating expense(s) or increase production-based incentives
- Decrease discount rate
- Impose positive cash flow constraint (Utility IPP only)
- Impose minimum DSCR constraint (Utility IPP only)

Metric	Base
Annual Energy	32,417,342 kWh
PPA price	13.84 ¢/kWh
LCOE Nominal	14.86 ¢/kWh
LCOE Real	12.07 ¢/kWh
Internal rate of return (%)	10.00 %
Minimum DSCR	1.07
Net present value (\$)	\$-504,328.75
Calculated ppa escalation (%)	1.00 %
Calculated debt fraction (%)	50.00 %
Capacity Factor	18.5 %
First year kWhac/kWdc	1,621
System performance factor (%)	0.83
Total Land Area	66.01 acres

Scenario 2: IRR is too high


Symptoms:

- Reasonable-to-high PPA price
- High IRR
- Reasonable minimum DSCR
- Positive NPV

Project income is more than needed to cover initial investment.

Possible solutions:

- Increase PPA escalation rate
- Increase operating expense(s) or decrease production-based incentives
- Decrease discount rate
- Impose positive cash flow constraint (Utility IPP only)
- Impose minimum DSCR constraint (Utility IPP only)

Metric	Base
Annual Energy	32,417,342 kWh
PPA price	23.16 ¢/kWh
LCOE Nominal	23.16 ¢/kWh
LCOE Real	18.81 ¢/kWh
Internal rate of return (%)	25.22 %
Minimum DSCR	1.61
Net present value (\$)	\$ 12,818,530.00
Calculated ppa escalation (%)	0.00 %
Calculated debt fraction (%)	50.00 %
Capacity Factor	18.5 %
First year kWhac/kWdc	1,621
System performance factor (%)	0.83
Total Land Area	66.01 acres