

What's New in the Battery Model for the System Advisor Model

Darice Guittet, Brian Mirletz, and Matt Prilliman September 1, 2021

SAM Webinars for 2021

Merchant Plant Financial Model Marine Energy Performance Models **New Battery Model Features** New Community Solar Financial Model Electricity Bill Calculator Updates

August 4 August 18 **September 1** September 15 September 29

Register for free at: <u>https://sam.nrel.gov/events.html</u>

Find webinar recordings at <u>https://sam.nrel.gov/</u>

Questions and Answers

	File View Help 🕤 •	- 0 9 ×
	 Audio Telephone Mic & Speakers 	ម
0	Dial: +1 (91 Access Code: 871-48 Audio PIN: 9	4) 614-3429 12-194
	If you're already on the call, p	press #9# now.
	(and additional numb Problem dialing)	ners) n?
	- Questions	5
		17
	[Enter a question for staff]	Send
	Webinar Nov Webinar ID: 153-46	V 5-475
	GoToWebi	nar

Desktop application

Instant Join Viewer

We will either type an answer to your question or answer it at the end of the presentation.

System Advisor Model (SAM)

Free software that enable detailed performance and financial analysis for renewable energy systems

Results Annual, Monthly, and Hourly Output, Capacity Factor, LCOE, NPV, Payback, Revenue

http://sam.nrel.gov/download

https://github.com/NREL/SAM

NATIONAL RENEWABLE ENERGY LABORATORY

Table of Contents

- 1. SAM Battery Model Intro
- 2. User Interface Overview
- Levelized Cost of Storage (LCOS)
- 4. New Dispatch Algorithms
- 5. Battery Lifetime Models

- Lithium ion, Lead acid, Flow battery chemistries
- AC or DC connected
- Battery lifetime models
- Replacements on set schedule or replace at specified capacity %
- Voltage, losses, temperature calculations

Nominal bank capacity 4000 kWh (DC) Max C-rate of discharge 0.25 per/hour Nominal bank power 999.999 kWdc Max C-rate of charge 0.25 per/hour Time at maximum power 4 h Maximum discharge current 1998.4 A Nominal bank voltage 500.4 VDC Maximum charge current 1998.4 A Total number of cells 347222 DC AC	-Computed Properties							 	
Nominal bank power 999.999 kWdc Max C-rate of charge 0.25 per/hour Time at maximum power 4 h Maximum discharge current 1998.4 A Nominal bank voltage 500.4 VDC Maximum charge current 1998.4 A Total number of cells 347222 DC AC	Nominal bank capacity	4000	kWh (DC)	Max C-rate of discharge	0.25	per/hour			
Time at maximum power 4 h Maximum discharge current 1998.4 A Nominal bank voltage 500.4 VDC Maximum charge current 1998.4 A Total number of cells 347222 DC AC	Nominal bank power	999.999	kWdc	Max C-rate of charge	0.25	per/hour			
Nominal bank voltage 500.4 VDC Maximum charge current 1998.4 A Total number of cells 347222 DC AC	Time at maximum power	4	h	Maximum discharge current	1998.4	А			
Total number of cells 347222 DC AC	Nominal bank voltage	500.4	VDC	Maximum charge current	1998.4	А			
	Total number of cells	347222]		DC	AC			
Cells in series 139 Maximum discharge power 999,999 909,999 KW	Cells in series	139]	Maximum discharge power	999.999	959.999	kW		
Strings in parallel 2,498 Maximum charge power 999.999 1041.67 kW	Strings in parallel	2,498]	Maximum charge power	999.999	1041.67	kW		

- FOM: Dispatch based on look-ahead, new PV-Smoothing algorithm, or manual dispatch
- Cost of grid charging based on PPA rate unless utility rate is specified
- Revenue based on battery discharge to grid
- BTM: Dispatch options include Peak Shaving algorithm, custom power target inputs, Price signal forecast algorithm, manual dispatch
- Grid charging cost based on utility rate
- Revenue based on battery discharge to load reducing utility bill

SAM Battery User Interface Overview

Levelized Cost of Storage (LCOS)

- Total storage lifecycle costs / Total electricity discharged from storage
- Considered when comparing storage systems with different costs,

- Initial Battery Investment Costs (\$) Investment cost -
- $\sum_{n=1}^{NO&M cost}$ Lifecycle O&M Costs (\$)
- $\sum_{n=1}^{NCharging cost}$ Lifecycle Battery Charging Costs (\$)
- $\frac{End-of-life cost}{(1+r)^{N+1}} Battery Salvage value Costs ($)$
- <u>NElecDischarged</u> Lifecycle Battery Energy Discharge (kWh)

https://www.cell.com/ioule/pdfExtended/S2542-

Levelized Cost of Storage (LCOS)

Why is the LCOS a valuable metric?

- Batteries and other technologies are anticipated to improve both in round-trip efficiency, capital cost and operating costs and so the LCOS can combine those improvements into one metric.
- Helpful to compare different technologies meeting the same service (same dispatch, duration, cycles).
- New US DOE Storage Shot goal based on an LCOS target.
- LCOS is helpful to examine the impact of low electricity charging prices on the storage cost-effectiveness
- LCOS is very use-case dependent (li-ion batteries can have very different LCOS Values depending on how often they are cycled, duration, etc.)
- LCOS should not be compared to the wholesale nor residential electricity price.

DOE Storage Shot: (<u>https://www.energy.gov/eere/long-duration-storage-shot</u>) NREL Storage Futures Model Inputs report: <u>https://www.nrel.gov/docs/fy21osti/78694.pdf</u> LCOS Reference: (<u>https://www.cell.com/joule/pdfExtended/S2542-4351(18)30583-X</u>)

System Charging Costs

- Battery can charge from system or from grid
- System charging must account for cost of electricity coming from PV or other system
- LCOE of PV system only(adjusted for inflation) is used as the cost of charging and is calculated from:

$$LCOE_{PV} = R \cdot \frac{Investment \ cost_{PV}}{Investment \ cost_{PV+Battery}} \cdot LCOE_{PV+Battery}$$

R = 1.25 (ratio of capex ratio to LCOE ratio)

Hours of storage	LCOE (PV + batt)	/ LCOE (PV) Capex (PV	′ + batt) / Capex (PV)	R
0.	.5	1.21	1.32	1.10
	1	1.29	1.44	1.12
	2	1.46	1.67	1.15
	4	1.80	2.14	1.19
	6	2.14	2.60	1.21
	8	2.48	3.06	1.24
1	.0	2.79	3.53	1.26
1	.2	3.09	3.99	1.29

Grid Charging Costs

- Cost to charge battery from grid
- Different for FOM or BTM
- PPA rate models:

 $\sum_{a}^{nyears} \frac{1}{(1+r)^a} \sum_{h}^{nsteps} \frac{\text{(kWh)}}{\text{grid}_{to}_{batt_h} \cdot ppa_{price_h}}$

- Electricity rate models: (kWh) $\sum_{a}^{nyears} \frac{1}{(1+r)^a} \sum_{m}^{12} \frac{grid_to_batt_m}{grid_total_m} \cdot \frac{(\$)}{energy_charge_m + net_annual_true_up_m}$ (\$)
- Single owner model uses FOM equation if no utility rates are enabled, BTM if utility rates are enabled
- Merchant plant uses Energy market revenue cost inputs for grid charging cost basis
- For PVWatts Battery, annual degradation rates are used rather than calculating each year

• More battery cycling = lower LCOS

FOM Battery	LCOS real (cents/kWh)	LCOE real (cents/kWh)
2-hour manual	47.45	6.18
2-hour automatic	51.00	6.19
4-hour manual	36.03	6.25
4-hour automatic	36.18	6.25

LCOS CALCULATIONS												
Annual storage costs (\$)	-31,508,116	-1,621,524	-1,489,881	-1,436,076	-1,407,360	-1,392,069	-1,384,839	-1,383,086	-1,385,309	-1,390,508	-1,398,040	-1,407,418
Annual cost to charge from grid (\$)	0	0	0	0	0	0	0	0	0	0	0	0
Annual cost to charge from system (\$)	0	1,591,356	1,459,434	1,405,014	1,375,550	1,359,427	1,351,301	1,348,599	1,349,823	1,353,976	1,360,417	1,368,660
Battery fixed expense (\$)	0	300	308	315	323	331	339	348	357	366	375	384
Battery production-based expense (\$)	0	5,867	5,299	5,038	4,878	4,771	4,694	4,638	4,595	4,563	4,539	4,520
Battery capacity-based expense (\$)	0	24,000	24,840	25,709	26,609	27,541	28,504	29,502	30,535	31,603	32,710	33,854
Annual battery salvage value costs (\$)	0	0	0	0	0	0	0	0	0	0	0	0
Annual storage discharge (kWh)	0	19,557,972	17,402,074	16,299,321	15,550,927	14,983,661	14,524,998	14,138,098	13,801,654	13,502,410	13,231,429	12,982,263
Present value of annual storage costs (\$)	54,229,232											
Present value of annual stored energy (nominal) (kWh)	147,300,576											
Levelized cost of storage (nominal) (cents/kWh)	36.82											
Levelized cost of storage (real) (cents/kWh)	29.55											

 LCOS not indicative of overall project performance for generation + storage projects

	Р	rice Signal	S	P	eak Shavir	Ig
	LCOS (cents/ kWh)	LCOE (cents/ kWh)	NPV (\$)	LCOS (cents/ kWh)	LCOE (cents/ kWh)	NPV (\$)
San Diego Hospital w/ ITC	52.17	7.16	3612656	85.53	7.11	2777090
San Diego Hospital Grid Charging	40.99	13.43	2633382	98.21	12.06	1362200

New Dispatch Algorithms

- vstem Advisor Model
- System is used to reduce a residential or commercial building's utility bill
- Load profile is provided as input in addition to renewable system performance
- Utility rates can be downloaded from the Utility Rate Database
- Major sources of savings:
 - Energy arbitrage vs time of use rates
 - Peak demand reduction

Behind The Meter Dispatch Modes

Dispatch Mode	Inputs	Use Case
Peak Shaving	PV and Load forecast	Peak Demand Charges
Input Grid Power Targets	Monthly or time series targets	Specify more detailed peak power
Custom Dispatch	Time series	PySAM / outside optimization
Manual Dispatch	Schedule by hour and month	Energy Arbitrage
Price Signals Dispatch	PV and load forecast, utility rates	Mix of TOU charges and demand charges, battery degradation

Bold: defaults (commercial and residential models, respectively)*Italics:* Available in PVWatts-Battery modelPrice Sig

Peak Shaving: DiOrio 2017 Price Signals: Mirletz and Guittet 2021

NATIONAL RENEWABLE ENERGY LABORATORY

- Additional input for price signals dispatch: the cycle degradation penalty
- Can be automatically computed or manually specified

Case Study

System Advisor Mode

- San Diego Hospital
- Utility rate includes TOU energy periods and demand charges
 - High cost energy is 4 pm to 9 pm
- PV + Battery System sized using REopt Lite
- Price signals dispatch achieved highest net present value, despite allowing higher demand charges

 Price Signals Dispatch
 Manual Dispatch
 Peak Shaving Dispatch

Mirletz and Guittet 2021

Case Study

Mirletz and Guittet 2021 https://www.nrel.gov/docs/fy21osti/79575.pdf

- System is used to maximize revenue for an independent power producer
- Previous algorithms looked at maximizing revenue for time of delivery in a PPA
- New algorithm smooths PV for improved ramp rate control
 - Improves grid stability
 - Avoids violation penalties in relevant markets
 - Smaller storage requirements than firming
- Developed by Electric Power Research Institute
 - Python code available at: https://github.com/epridev/PV-Ramp-Rate-Smoothing

PV Smoothing Controller

- Based on PI (proportional plus integral) feedback controller
- **Primary Objective**
 - Output power should track PV power without exceeding ramp rate and storage boundaries
- Additional Objectives:
 - Return storage to the resting state of charge (SOC)
 - Prepare for near-future ramping

from storage

Fregosi, Bolen, and Hobbs 2021

PV Smoothing Controller

- Begin ramping output before PV power ramps
- Storage energy and power requirements are greatly reduced

Begin down-ramp to avoid future energy accumulation

Fregosi, Bolen, and Hobbs 2021

PV Smoothing Controller

Front-of-meter (FOM) Storage Dispatch Options-

The storage dispatch options determine how and when the battery charges and discharges. Choose an option below and then provide the dispatch details as appropriate.

Automated dispatch PV smoothing	Battery can charge from grid	Battery is AC-connected. Charging from clipped power is only available for automated dispatch and DC-connected batteries. See
O Dispatch to custom time series	Battery can charge from system	input under Power Converters on Battery Cell and System page.
O Manual dispatch		

-PV Smoothing-

PV smoothing dispatches the battery to limit power ramp rates during periods of intermittent clouds to "smooth" the photovoltaic array output.

Weather file time step	1	minutes				Battery energy	4000	kWhac
Ramp timestep multiplier	10					Battery power	1041.67	kWac
Ramp interval	10	minutes			Batte	ry round trip efficiency	92.16	%
Maximum ramp rate	10	% of nameplate per ran	np interval		Namer	plate for PV smoothing	41580	kWac
Battery resting SOC	50	% For PV smoothing, the interconnect lin	nameplate mit.	is the minimum of the syste	em AC capacity and	Interconnection limit	100000	kWac
C Fachla AC unana haved			4		Multipliers			
Enable AC upper bound		AC upper bound		fraction of nameplate	Track	PV power multiplier (kp	o) 1.	2
✓ Enable AC lower bound		AC lower bound	0	fraction of nameplate	Return t	to rest SOC multiplier (k	i) 1.	8
Correct up-ramp violations					Forecast accumul	ation error multiplier (k	f) 0.	3
Curtail violations						Reset to Defa	aults	
Enable short-term power fore	ecast	Forecasting window		3 periods of ramp inter	vals			
Perfect look and	ead							
O Look ahead to	custom weather	file						
For the Dispatch to Custom W Resource page.	eather File optic	n, choose a weather file	in the SAM	CSV format to use for the c	dispatch forecast inste	ead of the weather file o	on the Location a	nd
Browse								

Battery Lifetime Models

Li-Ion Chemistries for Stationary Storage

ESS battery chemistry market share forecast

Image credit: Wood Mackenzie

Important factors:

- Energy Density
- Cost
- Lifetime
- Safety
- Critical materials

NCA (Lithium Nickel Cobalt Aluminum), LFP (Lithium Ferro Phosphate), and NMC (Lithium Nickel Manganese Cobalt Oxide) have achieved mass-market scale

- NCA in EV
- NMC and LFP in EV and stationary applications
- Others include LMO/LTO for stationary

Accurate battery life prediction for technoeconomic analysis:

- Reduces costs by reducing the battery size needed to satisfy warranties and guarantee performance
- Inform replacements in discounted cashflow analysis
- Inform decisions on second life

Methods:

- Matrix of test conditions creates small but well-designed lab datasets and controlled, accelerated test conditions
- Physics-based and data-driven modeling informed by these measurements allow predictive models for **extrapolating** time and conditions
- Challenging because end-use applications have uncontrolled operating conditions

SAM models:

- Life models integrated with battery technology, dispatch and financial models
- NMC/Graphite, LFP/Graphite, and LMO/LTO (Lithium manganese spinel and Lithium titanate)

SAM Battery Lifetime: Calendar – Cycle Input

System Advisor Model

SAM Battery Lifetime: New Models

NMC/Graphite

LMO/LTO Life Model

K. Smith, A. Saxon, M. Keyser, B.
Lundstrom, Ziwei Cao, A. Roc.,
Life prediction model for gridconnected li-ion battery energy storage system.
2017 American Control Conference (ACC)

SAM vs NREL NMC RPT data and Life model for Cycling conditions RPT Data in circles, NREL model in dashed, SAM in line 80 75 70 Capacity [Ah] 65 (01) 23^oC, 80%DOD 60 (02) 23 °oC, 80% DOD 55 (03) 30^oC, 100%DOD (04) 30^oC, 80%DOD, 50%DC 50 (06) 0^oC, 80%DOD (07) 0^oC, 80%DOD 45 (09) 45^oC, 80%DOD 50 100 150 200 250 300 Days SAM vs NREL NMC RPT data and Life model for Storage conditions

LFP/Graphite

DoD: 100% DoD: 80%

Import	Depth-of-discharge (%)	Cycles Elapsed	Capacity (%)	
r.	100	0	100	
Export	100	128	98.7907	
Сору	100	202	97.9632	
Paste	100	277	97.3904	
Deuro	100	371	96.6266	
ROWS:	100	523	95.9264	
172	100	666	95.2263	
	100	1012	93.9533	
	100	1354	92.9349	
	100	1733	91.9484	

LMO/LTO Life Model

100

Effective capacity (%) 5

Cycle Degradation

Naumann M., Spingler F. B. and Jossen A.,

Analysis and modeling of cycle aging of a commercial LiFePO4/graphite cell. 2020 J. Power. Sources.

140

Calendar - Cycle Table LMO/LTO Life Model NMC/Gr Life Model SAM vs INL LMO/LTO RPT data and Life model for Cycling conditions RPT Data in circles, Matlab model in dashed, SAM in line 1.00 0.99 0.98 Capacity [Ah] 30 C, 60% DOD, 1 C 30 C, 70% DOD, 10 C 0.97 30 C, 100% DOD, 5 C 40 C, 60% DOD, 10 C Behind The Meter Storage 0.96 40 C, 70% DOD, 5 C 40 C, 100% DOD, 1 C 0.95 Consortium. 50 C, 60% DOD, 5 C 50 C, 70% DOD, 1 C 0.94 Testing and life modeling ongoing by 50 C, 100% DOD, 10 C INL (Matt Shirk, et al) and NREL (Paul 0 20 40 60 80 100 120 Days Gasper, et al). SAM vs INL LMO/LTO RPT data and Life model for Cycling conditions RPT Data in circles, Matlab model in dashed, SAM in line

LMO/LTO

Example Simulation

PV kW

Batt kW:

Batt kWh:

With replacements at 60% of original capacity

- NMC/Gr replaced 3 times in 20 years
- LFP/Gr has 89.8% capacity retention
- LMO/LTO has 97.24% •

Summary and Upcoming

System Advisor Model

Summary of New Features

- LCOS Metric
- BTM Price Signals Dispatch
- FOM PV Smoothing Dispatch
- Chemistry-specific battery lifetime models

Upcoming

- Standalone Battery Model
- Fall 2021 SAM Release

Thanks

BACKUP SLIDES

- 1. Forecast cost of utility bill without dispatch
- 2. Schedule discharge to the load for the highest cost periods according to: $P_{discharge,t} = \frac{E_{remaining,t} * C_t}{(\sum_{i=t}^p C_i) * dt}$
- 3. Schedule charging for the lowest marginal cost periods
- 4. Reduce discharging or charging based on expected SOC
- 5. Repeat 2-4 to generate plans with 0 to 12 hours of dispatch
- 6. Select lowest cost plan according to:

 $C_{total} = C_{utility_bill} + C_{cycle} * n_{cycles} - E_{remaining} * C_{marginal}$