

-PySAM Workshop

Darice Guittet 2020 SAM Webinars Oct 14, 2020

SAM Webinars for 2020

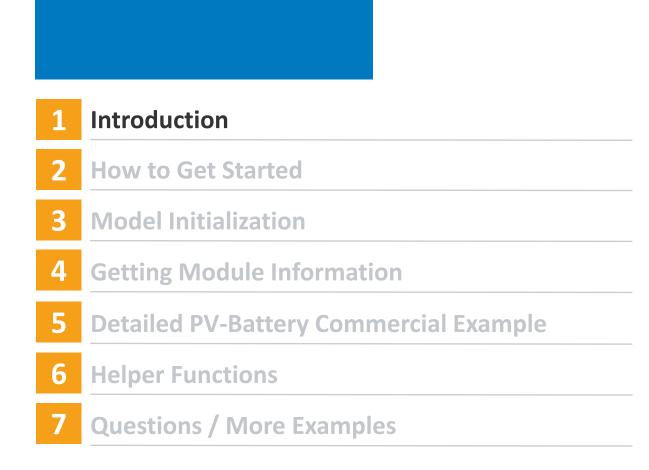
Introduction to SAM Workshop July 22 PV Systems in SAM 2020.2.29 Aug 5 Batteries in SAM 2020.2.29:

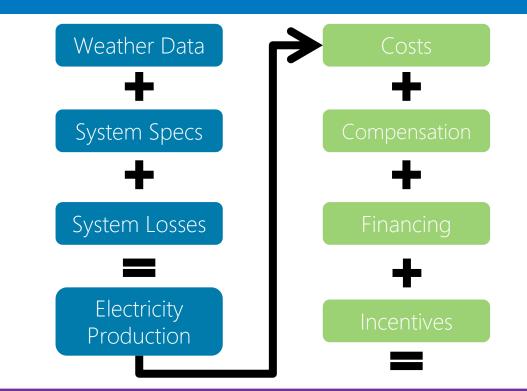
Focus on Battery TechnologyAug 19Behind-the-Meter SystemsSep 2Front-of-Meter SystemsSep 16PySAM WorkshopOct 14

This webinar will be recorded and posted on the SAM website at <u>https://sam.nrel.gov/</u>

Questions and Answers

- Audio	51
	1
Telephone	
O Mic & Speakers	
Dial: +1 (914) 61	14-3429
Access Code: 871-482-19	
Audio PIN: 9	
If you're already on the call, press	#9# now
(and <u>additional numbers</u> .)
Problem dialing in?	
- Questions	ទ
- Questions	5
- Questions	
Questions [Enter a question for staff]	
[Enter a question for staff] Webinar Now	Send
[Enter a question for staff]	Send


Desktop application



Instant Join Viewer

- 2 How to Get Started
- **3** Model Initialization
- 4 Getting Module Information
- 5 Detailed PV-Battery Commercial Example
- 6 Helper Functions
- 7 Questions / More Examples

Results Annual, Monthly, and Hourly Output, Capacity Factor, LCOE, NPV, Payback, Revenue

Photovoltaics Detailed & PVWatts High Concentration PV Battery Storage Detailed & PVWatts Generic System Concentrating solar power Wind Fuel Cell Geothermal Solar water heating Biomass Marine Energy

Distributed Residential Commercial Third-party ownership Power Purchase Agreements Single owner Equity flips Sale-leaseback Merchant Plant Host/Developer Simple LCOE calculator

Python package that enables you to run the underlying modules that make up a simulation in SAM

• Unit modules called compute_modules in the SSC code

REL-PySAM 2.1.4 documentatio	n »		previous next mod
able of Contents	Modules		
dules System Simulation Module Names and Descriptions	System Simulation	Module Names and Descriptions	
Other Modules Names and Descriptions	The following modules are u	used in the SAM GUI's technology-financial simulati	ons.
revious topic	PySAM Module	SAM Desktop	Description
	<u>Battwatts</u>		Simplified battery storage model
binars	Belpe	Residential, Commercial and Third Party	Electric load calculator for residential buildings
xt topic	<u>Biomass</u>	Biomass combustion	Biomass combustion for electricity generation
ualoutput	Cashloan	Residential and Commercial	Financial model for residential and commercial behind-the-meter projects
is Page	Equpartflip	All Equity Partnership Flip	PPA all equity partnership flip (no debt) financial model
-	Fuelcell	Fuelcell	Fuelcell model
w Source uick search	GenericSystem	Generic system	Basic power system model using either capacity, capacity factor, and heat rate, or an hourly power generation profile as input
Go	Geothermal	Geothermal	Geothermal power model for hydrothermal and EGS systems with flash or binary conversion
	Grid	Grid	Interconnect and Curtailment limits

Python package that enables you to run the underlying modules that make up a simulation in SAM

• Unit modules called compute_modules in the SSC code

A single simulation is a process chaining together multiple unit modules

- Order
- Information needs to be passed from one to the next

NREL-PySAM 2.1.4 documentation	»		previous next modu	les index				
Previous topic	SAM Simulation Configurations							
Windpower	A SAM simulation is a combination of unit compute_n	odel) or project (performance model plus financial						
Next topic	models).							
To import a case from the SAM	SAM Configuration	Description	SSC Compute Module(s)					
To import a case from the SAM GUI	Biomass Combustion – LCOE Calculator (FCR Method)	Biomass combustion for electricity generation. Calculate LCOE using fixed charge rate method	<u>Biomass, Grid, Lcoefcr</u>					
This Page	Biomass Combustion – Merchant Plant	Biomass combustion for electricity generation. Merchant plant with constant DSCR and ancillary	<u>Biomass, Grid, Merchantplant</u>					

Python package that enables you to run the underlying modules that make up a simulation in SAM

• Unit modules called compute_modules in the SSC code

A single simulation is a process chaining together multiple unit modules

- Order
- Information needs to be passed from one to the next
- Assembled behind the scenes in SAM user interface

PySAM, and SAM's other software development kits, expose these unit modules so that they can be customized and embedded in software applications

Python package that enables you to run the underlying modules that make up a simulation in SAM

• Unit modules called compute_modules in the SSC code

A single simulation is a process chaining together multiple unit modules

- Order
- Information needs to be passed from one to the next
- Assembled behind the scenes in SAM user interface

PySAM, and SAM's other software development kits, expose these unit modules so that they can be customized and embedded in software applications

PySAM does NOT contain all the features in the SAM GUI

PySAM Versions

Official

Release Notes

Version 2.1.4, June 8, 2020 ~ SAM 2020.2.29 r2, SSC Version 240

- Pvwattsv5_1ts bug fix
- Self-shading calculation speed-up for Pvwattsv7, Pvsamv1 & Pvwattsv5

Version 2.1.3, May 29, 2020 ~ SAM 2020.2.29 r2, SSC Version 240

SAM Release fixes for revision 2

Version 2.1.1, May 15, 2020 ~ SAM 2020.2.29 r1, SSC Version 238

- reopt size post bug
- ssc_sim_from_dict bug fix
- Version attribute: PySAM.__version__

Development

Version 2.2.0

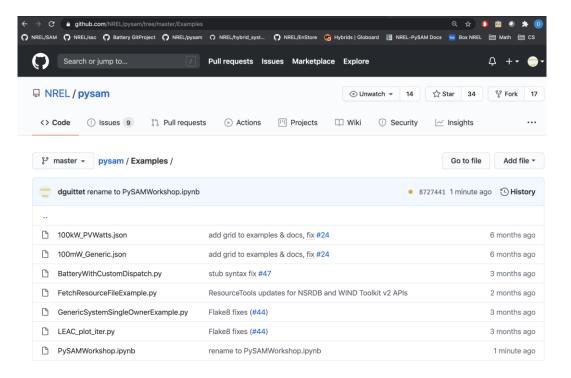
Rename StandAloneBattery to Battery

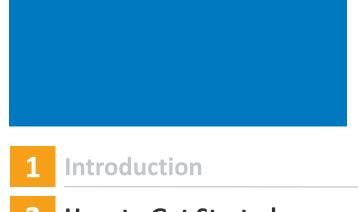
Version 2.1.5.dev3, Sep 3, 2020 ~ SAM 2020.2.29 r3, SSC Version 242

- Price Signals Dispatch
- Bug fix in PVWattsBatteryCommercial and PVBatteryCommercial incentives defaults

Version 2.1.5.dev2, Aug 10, 2020 ~ SAM 2020.2.29 r3, SSC Version 242

· BatteryStateful bug fixes: current


Version 2.1.5.dev1, Aug 3, 2020 ~ SAM 2020.2.29 r3, SSC Version 242


- · BatteryStateful bug fixes: thermal, voltage
- Stub files syntax fix

New version of SAM and PySAM in mid-November

Workshop Notebook

https://github.com/NREL/pysam/blob/master/Examples/PySAMWorkshop.ipynb

2 How to Get Started

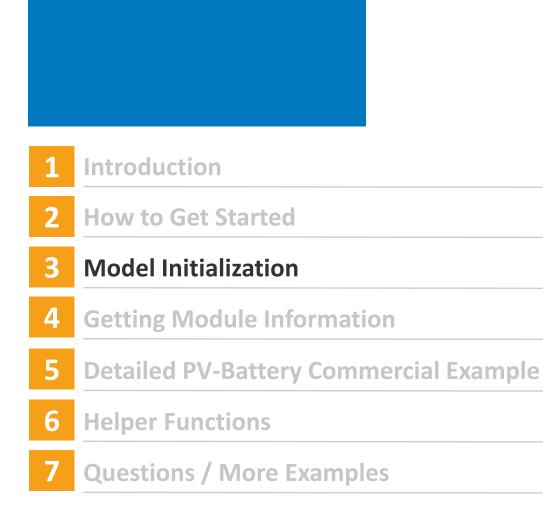
3 Model Initialization

- **4** Getting Module Information
- **5** Detailed PV-Battery Commercial Example

6 Helper Functions

7 Questions / More Examples

Installation


Install Python or Anaconda, a Python distribution platform


• 64-bit Python 3.5-3.8 for Linux, Mac and Windows

pip install nrel-pysam

conda install -u nrel nrel-pysam nrel-pysam-stubs

- Note the name has NREL prefixed
- Nrel-pysam-stubs is automatically downloaded using pip

Explore the user interface:

- What technology and financial simulations are available
- Categories of inputs
- Inputs' data requirements
- Interdependent inputs

PySAM requires users to maintain consistency

- Changes in the correct order
- Data flow from one unit module to the next

- In SAM, a set of input pages is loaded to present all the inputs that are needed for the whole simulation.
- A list of all simulation configurations and their unit models in order can be found on the PySAM documentation site under "SAM Simulation Configurations"

SAM Simulation Configurations

A SAM simulation is a combination of unit compute_modules that models a type of system (performance model) or project (performance model plus financial models).

SAM Configuration	Description	SSC Compute Module(s)
Biomass Combustion – LCOE Calculator (FCR Method)	Biomass combustion for electricity generation. Calculate LCOE using fixed charge rate method	<u>Biomass, Grid, Lcoefcr</u>
Biomass Combustion – Merchant Plant	Biomass combustion for electricity generation. Merchant	<u>Biomass, Grid, Merchantplant</u>

- For each unit module, PySAM inputs are categorized into groups. These groups roughly correspond to the SAM UI pages.
- But sometimes they don't.

Table of Contents	Biomass
mass Creating an Instance Functions	Wrapper for SAM Simulation Core mo
iopower Group	Creating an Instance
ljustmentFactors Group Jtputs Group	There are three methods to create a
ous topic	newclass' attributes with default valu
	corresponds to a SAM GUI configurat wrap function allows compatibility wi
t topic	Biomass model description

odel: cmod biomass.cpp

new instance of a PvSAM modu ues specific to a config. Each t tion. Using new creates an insta ith PvSSC, for details, refer to F

- For each unit module, its inputs are categorized into groups. These groups roughly correspond to the SAM UI pages.
- But sometimes they don't.
- SDKtool, variable tables in SSC source code

Module Browser Data Container			Script Edito	r		
Load/unload library Choose SSC library			Load data file	Save data f	ile	
Available modules:			TYPE	DATA		NAME
biomass		1	SSC_INPUT	SSC_STRING	file_	name
solarpilot		2	SSC_INPUT	SSC_NUMBER	syst	em_capacity
belpe		3	SSC_INPUT	SSC_NUMBER	biop	wr.feedstock.total
dsg_flux_preprocess		4	SSC_INPUT	SSC_NUMBER	biop	wr.feedstock.total_biomass
lavoutarea		5	SSC_INPUT	SSC_NUMBER	biop	wr.feedstock.total_moisture
sco2_design_point		6	SSC_INPUT	SSC_NUMBER	biop	wr.feedstock.total_coal
sco2_design_cycle		7	SSC_INPUT	SSC_NUMBER	biop	wr.feedstock.total_lhv
		8	SSC_INPUT	SSC_NUMBER	biop	wr.feedstock.total_hhv
sco2_csp_system	ic .	9	SSC_INPUT	SSC_NUMBER	biop	wr.feedstock.total_c

Table of Contents

Biomass

- Creating an Instance
- Functions
- Biopower Group
- AdjustmentFactors GroupOutputs Group

Previous topic

Belpe

Next topic

Biomass

Wrapper for SAM Simulation Core model: cmod biomass.cpp

Creating an Instance

There are three methods to create a new instance of a PySAM modu newclass' attributes with default values specific to a config. Each t corresponds to a SAM GUI configuration. Using new creates an insta wrap function allows compatibility with PySSC, for details, refer to <u>F</u>

Biomass model description

- For each unit module, its inputs are categorized into groups. These groups roughly correspond to the SAM UI pages.
- But sometimes they don't.
- SDKtool, variable tables in SSC source code

Module Browser Data Container Load/unload library Choose SSC library		Script Editor						
)(Load data file	. Save data f	ile)		
Available modules:			TYPE	DATA		NAME		
biomass		1	SSC_INPUT	SSC_STRING	file_	name		
solarpilot		2	SSC_INPUT	SSC_NUMBER	syst	tem_capacity		
belpe		3	SSC_INPUT	SSC_NUMBER	biop	pwr.feedstock.total		
dsg_flux_preprocess		4	SSC_INPUT	SSC_NUMBER	biop	pwr.feedstock.total_biomass		
lavoutarea		5	SSC_INPUT	SSC_NUMBER	biop	pwr.feedstock.total_moisture		
sco2_design_point		6	SSC_INPUT	SSC_NUMBER	biop	pwr.feedstock.total_coal		
sco2_design_cycle		7	SSC_INPUT	SSC_NUMBER	biop	pwr.feedstock.total_lhv		
sco2_csp_system		8	SSC_INPUT	SSC_NUMBER	biop	pwr.feedstock.total_hhv		
sco2_csp_system		9	SSC_INPUT	SSC_NUMBER	biop	pwr.feedstock.total_c		

<pre>static var_inf</pre>	o _cm_vtab_biomass[]	= {
// VARTYPE	DATATYPE	NAME
{ SSC_INPU	T, SSC_STRING,	"file_name",
{ SSC_INPU	T, SSC_NUMBER, "syste	em_capacity", "Nameplate capacity", "kW",
{ SSC_INPU	T, SSC_NUMBER,	"biopwr.feedstock.total",
{ SSC_INPU	T, SSC_NUMBER,	<pre>"biopwr.feedstock.total_biomass",</pre>
{ SSC_INPU	T, SSC_NUMBER,	<pre>"biopwr.feedstock.total_moisture",</pre>

Input consistency

- "Variable may need to be updated if the values of the following have changed"
- Intra-module input dependencies
- In SAM, automatically handled
- In PySAM, up to user

inverter_co	int
Number of ir	verters
Constraints:	INTEGER,POSITIVE
Required: Tr	Je
• 6	<i>may need to be updated if the values of the following have changed</i> ar_imp ar_vmp

- 6par_voc
- cec_i_mp_ref
- cec_v_mp_ref

6par_imp

Imp [A]

Required: True if module_model=2

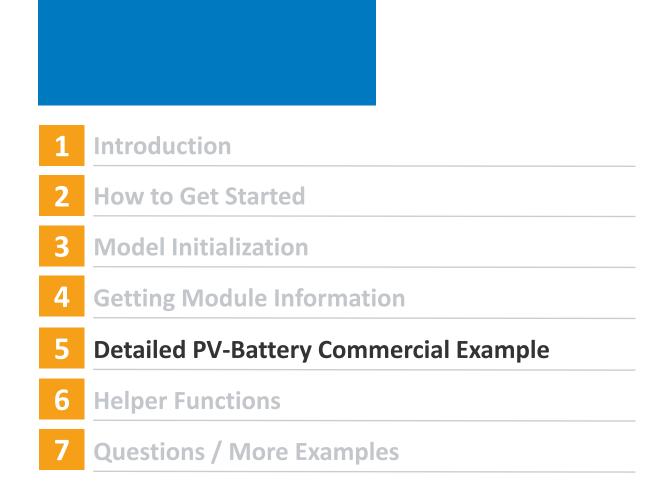
Changes to this variable may require updating the values of the following:

- inverter_count
- subarray1_modules_per_string
- subarray1_nstrings
- subarray2_enable
- subarray3_enable
- subarray4_enable
- system_capacity

Input consistency

- "Variable may need to be updated if the values of the following have changed"
- Intra-module input dependencies
- In SAM, automatically handled
- In PySAM, up to user

eneral Information		Nominal Maximum Power Point Ratings at STC			
Module name Generic polycrystalline silicon mo		Power	180 Wdc		
Cell type	multiSi	1		Efficiency	13.8462 %
Module area	1.3	m ²			
Nominal operating cell temperature	46	°C		Current-Voltage (I-V) Cur	ve at STC
ectrical Specifications				Calculate and plot	
Maximum power point voltage (Vmp)	30	٧			
Maximum power point current (Imp)	6	A			IV curves
Open circuit voltage (Voc)	37	v			
Short circuit current (Isc)	7	A		6-	
Temperature coefficient of Voc	-0.11	V/°C	\$		
Temperature coefficient of Isc	0.004	A/*C	0	3	
Temperature coefficient of max. power point	-0.41	%/°C			
Number of cells in series	60			tuering	
The model assumes a reference bandgap voltage Eg_re emperature coefficient for bandgap of -0.0002677 eV/				0 2-	
Copy module specs from currently selected CE	C database mod	fule			


6par_imp

Imp [A]

Required: True if module_model=2

Changes to this variable may require updating the values of the following:

- inverter_count
- subarray1_modules_per_string
- subarray1_nstrings
- subarray2_enable
- subarray3_enable
- subarray4_enable
- system_capacity

Detailed PV-Battery - Commercial

Using a set of PSM weather files for different years, calculate how the average net present value (NPV) of the default Detailed PV-Battery – Commercial owner system changes with the size of a four-hour battery.

lexington_or_45.446370_-119.687903_psmv3_30_1998.csv lexington_or_45.446370_-119.687903_psmv3_30_1999.csv lexington_or_45.446370_-119.687903_psmv3_30_2000.csv lexington_or_45.446370_-119.687903_psmv3_30_2001.csv lexington_or_45.446370_-119.687903_psmv3_30_2002.csv lexington_or_45.446370_-119.687903_psmv3_30_2003.csv lexington_or_45.446370_-119.687903_psmv3_30_2004.csv lexington_or_45.446370_-119.687903_psmv3_30_2005.csv lexington_or_45.446370_-119.687903_psmv3_30_2005.csv lexington_or_45.446370_-119.687903_psmv3_30_2006.csv lexington_or_45.446370_-119.687903_psmv3_30_2007.csv lexington_or_45.446370_-119.687903_psmv3_30_2008.csv lexington_or_45.446370_-119.687903_psmv3_30_2009.csv lexington_or_45.446370_-119.687903_psmv3_30_2010.csv lexington_or_45.446370_-119.687903_psmv3_30_2011.csv lexington_or_45.446370_-119.687903_psmv3_30_2012.csv lexington_or_45.446370_-119.687903_psmv3_30_2013.csv lexington_or_45.446370_-119.687903_psmv3_30_2014.csv lexington_or_45.446370_-119.687903_psmv3_30_2015.csv lexington_or_45.446370_-119.687903_psmv3_30_2016.csv lexington_or_45.446370_-119.687903_psmv3_30_2017.csv lexington_or_45.446370_-119.687903_psmv3_30_2017.csv lexington_or_45.446370_-119.687903_psmv3_30_2018.csv

Detailed PV-Battery - Commercial

Detailed PV Model -Commercial Owner

Photovoltaic system using detailed photovoltaic model with separate module and inverter component models. Renewable energy system displaces commercial building electric load

Pvsamv1, Grid, Utilityrate5, Cashloan

Choose a performance model, and then choose from the available financial models.

•	Photovoltaic
	Detailed PV Model
	PVWatts
	High Concentration PV
►	Battery Storage

Concentrating Solar Power

•	Power Purchase Agreement	
v	Distributed	
	Residential Owner	
	Commercial Owner	
	Third Party Owner - Host	

Third Party - Host / Developer

<u>Pvsamv1</u>	Photovoltaic (detailed)	Detailed photovoltaic system model with separate components for module and inverter
Grid	Grid	Interconnect and Curtailment limits
Utilityrate5	Residential, Commercial, Third Party, Host Developer	Retail electricity bill calculator
<u>Cashloan</u>	Residential and Commercial	Financial model for residential and commercial behind-the-meter projects

Detailed PV-Battery - Commercial

NREL-PySAM 2.1.4 documentation » Modules »

Table of Contents

Pvsamv1

- Creating an Instance
- Functions
- SolarResource Group
- Losses Group
- Lifetime Group
- SystemDesign Group
- Shading Group
- Layout Group
- Module Group
- SimpleEfficiencyModuleMod el Group
- CECPerformanceModelWith ModuleDatabase Group
- CECPerformanceModelWithU serEnteredSpecifications Group
- SandiaPVArrayPerformance ModelWithModuleDatabase Group
- IEC61853SingleDiodeModel Group
- MermoudLejeuneSingleDiod eModel Group
- Inverter Group
- InverterCECDatabase Group
- InverterCECCoefficientGener ator Group
- InverterDatasheet Group
- InverterPartLoadCurve Group
- InverterMermoudLejeuneMo del Group
- BatterySystem Group
- Load Group
- BatteryCell Group
- BatteryDispatch Group
- ElectricityRates Group
- EuelCell Group

Pvsamv1

Wrapper for SAM Simula

Creating an Inst

There are three method lates the newclass' attri cialconfiguration corres empty attributes. The w PySSC.

Pvsamv1 model descr

Detailed photovoltaic sy

PySAM.Pvsamv1.defa Use financial config

- "FlatPlatePVA
- "FlatPlatePVC
- "FlatPlatePVH
- "FlatPlatePVL
- "FlatPlatePVL
- "FlatPlatePVN
- "FlatPlatePVN
- "FlatPlatePVR
- "FlatPlatePVS
- "FlatPlatePVS
- "FlatPlatePVT
- "PVBatteryAll
- "PVBatteryCo
- "PVBatteryHo
- "PVBatteryLev
- "PVBatteryMe
 "PVBatteryRe:

File V (+) Add untitled V

Module

Inverter

Losses

Grid Limits

Battery Storage

System Costs

Electricity Rates

Electric Load

Incentives

Lifetime and Degradation

Financial Parameters

System Design

Shading and Layout

PV-Battery, Commercial

Location and Resource The Solar Resource library is a list

The default library comes with onl frequently model. Once you build

Nam

Filter:

Solar Resource Library

Name des_moines_ia_41.586835_-93.6 fargo_nd_46.9_-96.8_mts1_60_tr daggett_ca_34.865371_-116.78: blythe_ca_33.617773_-114.5882 phoenix az 33.450495 -111.98:

SAM scans the following folders o on your computer, click Add/remo

/Users/dguittet/SAM Downloac /Users/dguittet/Downloads/bat /Users/dguittet/SAM Downloac

Download Weather Files The NSRDB is a database of thous typical-year (TMY) file for most lo

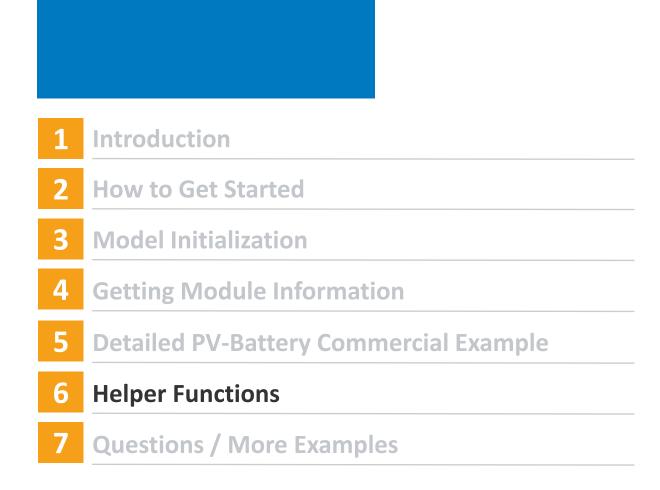
One location Oultipl

Type a location name, street ac

For locations not cover

Weather Data Information

The following information descr above. This is the file SAM will u

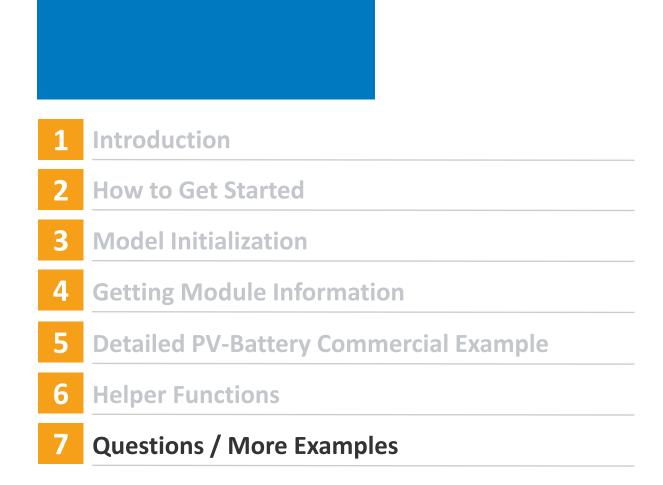

Weather file /Applications/SA

-Header Data from Weather

Latitude 33.45

-111.98

Longitude


Helper Functions

ResourceTools

- TMY_CSV_to_solar_data
 - TMY csv file as 'solar_resource_data' dictionary for Pvsamv1, Pvwattsv5, Pvwattsv7, ...
- SRW_to_wind_data
 - *SRW csv file as 'wind_resource_data' dictionary for Windpower*
- URDBv7_to_ElectricityRates
 - Utility Rate Database API version 7 response as Utilityrate5 inputs
- FetchResourceFiles
 - Downloader for National Solar Radiation Database and Wind Toolkit

BatteryTools

- battery_model_sizing
 - Modifies model for desired power and capacity

