

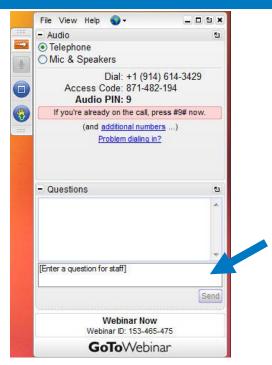
SAM Webinars for 2020

Introduction to SAM Workshop July 22

PV Systems in SAM 2020.2.29 Aug 5

Batteries in SAM 2020.2.29:

Focus on Battery Technology Aug 19


Behind-the-Meter Systems Sep 2

Front-of-Meter Systems Sep 16

Register for free at: https://sam.nrel.gov/events.html

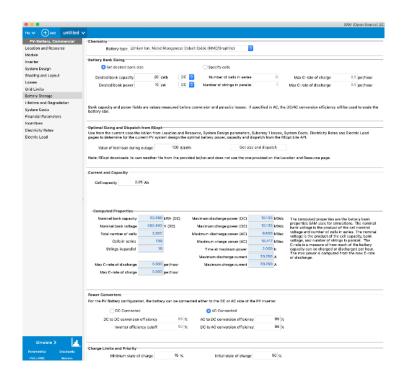
This webinar will be recorded and posted on the SAM website at

Questions and Answers

Desktop application

Instant Join Viewer

We will either type an answer to your question or answer it at the end of the presentation.


Introduction

Battery Storage Performance Models

- Detailed PV-Battery
- PVWatts-Battery
- Generic System-Battery

Detailed PV-Battery with Commercial Financial model

- 1 Component Models
- 2 Available Chemistries
- 3 Simple Use Case
- 4 Sizing from REopt Lite
- 5 Resilience Metrics
- 6 How to Fit your own Battery
- 7 Updates and Upcoming Features

- 1 Component Models
- 2 Available Chemistries
- 3 Simple Use Case
- 4 Sizing from REopt Lite
- 5 Resilience Metrics
- 6 How to Fit your own Battery
- 7 Updates and Upcoming Features

Component Models

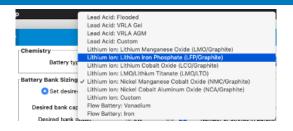
Cell Capacity

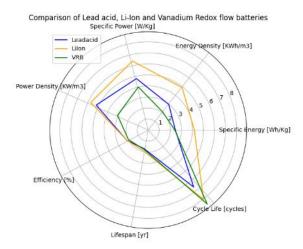
Sizing for power and capacity of the battery system

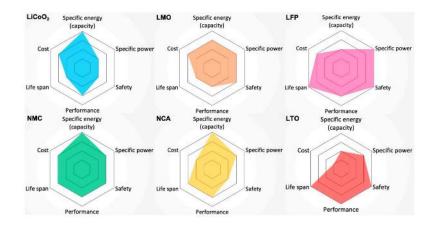
Lifetime Fade

- How capacity decreases overtime due to calendar (pure storage) and cycling fade
- Replacements

Voltage Curve

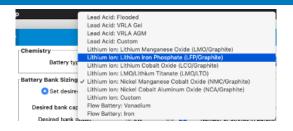

Voltage discharge curve as a function of the state-of-charge (SOC)

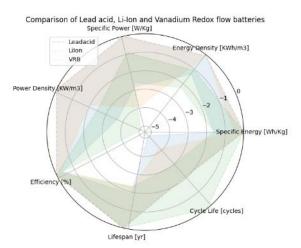

Thermal

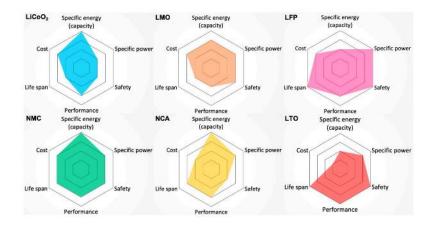

Heat transfer with environment for instantaneous thermal effects on capacity and resistance

- 1 Component Models
- 2 Available Chemistries
- 3 Simple Use Case
- 4 Sizing from REopt Lite
- 5 Resilience Metrics
- 6 How to Fit your own Battery
- 7 Updates and Upcoming Features

Available Chemistries

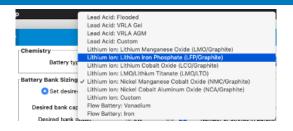


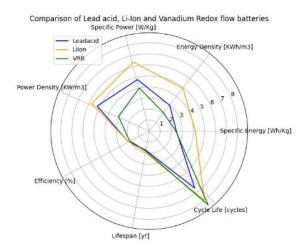


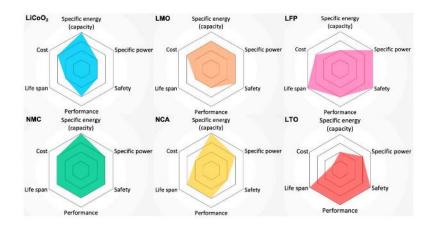

Sabihuddin et al. A Numerical and Graphical Review of Energy Storage Technologies. Energies 2015.

Miao et al. Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements. Energies 2019.

Available Chemistries



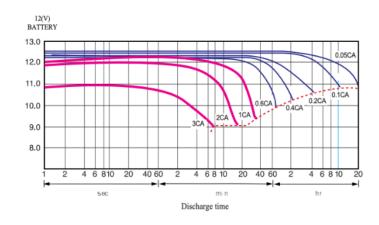



Sabihuddin et al. A Numerical and Graphical Review of Energy Storage Technologies. Energies 2015.

Miao et al. Current Li-lon Battery Technologies in Electric Vehicles and Opportunities for Advancements. Energies 2019.

Available Chemistries

Sabihuddin et al. A Numerical and Graphical Review of Energy Storage Technologies. Energies 2015.


Miao et al. Current Li-lon Battery Technologies in Electric Vehicles and Opportunities for Advancements. Energies 2019.

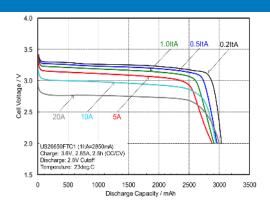
Lead Acid

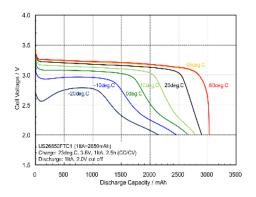
Examples

- US Battery 2000 XC2 (20C) Flooded
- GNB GF 12 076 H (20C) VRLA Gel
- Global Battery ESL 10-12 (C10) VRLA AGM

Uses the Kinetic Battery Capacity Model to account for Peukert's effect

Lead Acid Discharge Curve as a function of discharge current. Source: Global Battery ESL 100-12 spec sheet.


Lithium Ion


Examples

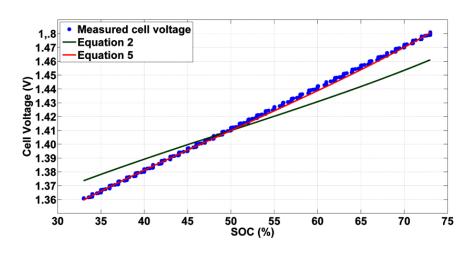
- Sony Fortelion IJ1001M LFP
- Toshiba SCiB SPCS-LIB010A LMO/LTO
- LG Chem RESU HV NMC

Share the same capacity, voltage, and lifetime models

Parameters from scientific paper and manufacturer datasheets

Yasuda, Masayuki. Sony energy storage system using olivine type battery.

Vanadium Redox Flow


Examples

UET ReFlex

VRFB voltage model from D'Agostino

Little degradation and thermal dependence

Ancillary losses used for pumps or other equipment

Riccardo D'Agostino et al. A Vanadium-Redox-Flow-Battery Model for Evaluation of Distributed Storage Implementation in Residential Energy Systems. IEEE Transactions on Energy Conversion 2015.

- 1 Component Models
- 2 Available Chemistries
- 3 Simple Use Case
- 4 Sizing from REopt Lite
- 5 Resilience Metrics
- 6 How to Fit your own Battery
- 7 Updates and Upcoming Features

Simple Use Case

PV-Battery Commercial Model

- 179.580 kW AC PV
- 20 kWh, 10 kW DC LFP/Graphite Battery, AC-connected
- Peak shaving

How does it effect the annual electricity bill? The payback period?

What does the battery do over the lifetime?

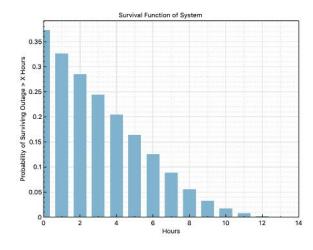
Do I need to replace it?

- 1 Component Models
- 2 Available Chemistries
- 3 Simple Use Case
- 4 Sizing from REopt Lite
- 5 Resilience Metrics
- 6 How to Fit your own Battery
- 7 Updates and Upcoming Features

Sizing from REopt

Battery size and dispatch strategy to maximize net present value*

- Determine the latitude and longitude of the location
- 2. Set up the PV system
- 3. Set up the load
- 4. Select a utility rate
- 5. Adjust battery capital and O&M costs
- 6. Adjust Value of Lost Load
- 7. Click Get Size and Dispatch



^{*}Only available for Distributed financial models, e.g. Residential, Commercial

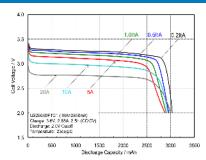
- 1 Component Models
- 2 Available Chemistries
- 3 Simple Use Case
- 4 Sizing from REopt Lite
- 5 Resilience Metrics
- 6 How to Fit your own Battery
- 7 Updates and Upcoming Features

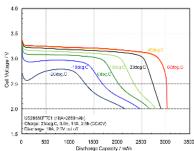
Resilience Metrics

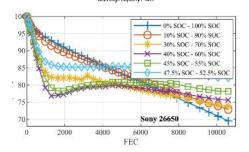
- Min, max and average hours of autonomy (hr)
- Average critical load (kWh)
- Probability and cumulative distribution function of autonomous hours
- Survival function of autonomous hours
- Hours of autonomy during outage at each timestep
 - 1. Set up the PV-Battery system
 - 2. Set up the load and critical load
 - 3. Click Simulate

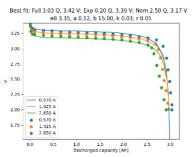
- 1 Component Models
- 2 Available Chemistries
- 3 Simple Use Case
- 4 Sizing from REopt Lite
- 5 Resilience Metrics
- 6 How to Fit your own Battery
- 7 Updates and Upcoming Features

How to fit your own battery


Manufacturer specs


Scientific paper


Test data


Yasuda, Masayuki. Sony energy storage system using olivine type battery.

Naumann M et al. Analysis and modeling of cycle aging of a commercial LiFePO4/graphite cell. 2020 J. Power. Sources.

Celsius	Capacity		
	-20	72.3333333	
	-10	81.8	
	0	88.8	
	10	93	
	23	96.6666667	
	45	101	
	60	101	

OD	Cycles	Capacity %		
	100	0	100	
	100	128	98.7906648	
	100	202	97.9632249	
	100	277	97.3903819	
	100	371	96.6265912	
	100	523	95.9264498	
	100	666	95.2263083	
	100	1012	93.9533239	
			NREL	I

22

- 1 Component Models
- 2 Available Chemistries
- 3 Simple Use Case
- 4 Sizing from REopt Lite
- 5 Resilience Metrics
- 6 How to Fit your own Battery
- Updates and Upcoming Features

Updates and Upcoming Features

Recent Updates

- Improved controller resulting in closer match with target battery power and higher roundtrip efficiency
- Fixes to the thermal model
- Cleaner interface

Upcoming

- Default values for battery parameters for some chemistries
- Cycling as a function of Temp
- Resistance as a function of Temp
- Sub-minute battery simulations (PySAM or SDK only)
- New dispatch algorithm for BTM systems

Questions?

Battery performance for frequency regulation on second timescale – Fernando M.