

SolarPILOT[™] and SolTrace Open Source Software

Mike Wagner, Ph.D. SAM Webinar Series July 18, 2018

© SolarReserve™ / NREI

Abstract

NREL is excited to announce that its SolarPILOT[™] and SolTrace software packages have both recently been made open source software! Join Dr. Mike Wagner for a webinar in which he will present recent updates to both software packages, the workflow for building and/or contributing to the open source projects, and an introduction to software usage. SolarPILOT[™] is NREL's tool for the design, characterization, and optimization of concentrating solar power tower solar field geometry. It is capable of modeling optical performance either with an analytical algorithm, or with Monte-Carlo ray tracing using SolTrace's embedded 'coretrace' engine. SolarPILOT is included in SAM's power tower models in limited form. While SolarPILOT is used by SAM's power tower models, the stand-alone user interface offers substantially more functionality; features include scripting, optimization, flux intensity plotting, complex land boundaries, multiple heliostat or designs, and others. SolTrace is a general ray tracing tool for concentrating optics, and has been in use by NREL, industry, and researchers for nearly 20 years.

The webinar will consist of three parts. In the first half hour, Mike will cover updates to SolarPILOT, including review of the optimization tool and field plotting tool. The second half hour will include a review of SolTrace and demonstrate its use in modeling a power tower system. In the remaining time, Mike will cover the open source projects and allow time for questions and answers.

Outline

- Introduction and overview
- SolarPILOT
 - Overview and recent development
 - Optimizing power tower systems [example]
 - Scripting [example]
- SolTrace
 - Overview and recent development
 - Modeling power tower optical performance
- Open source project overview
- Retrieving and compiling the code
- Contributing
- Q&A

Registration links and webinar recordings

ΩN	Login Register						
HOME	BLE ENERGY LABORATORY	SDK 🗵	SUPPORT	RESOURCES 🔻	CONTACT	ACCOUNT	ABOUT
Webina	rs and Video	s					
published by P Upcomin SAM webinar	aul Gilman on Thu, 20 1 g Webinars s are one-hour lectu	15-05-21 14:51 res with quest	ion and answer	sessions that cover va	arious topics abou	ut SAM. All webinar	s are free and start at 2 pm Mountain
• NREL's S	SolarPilot [™] and Sol ables	Trace Open-se	ource Software,	July 18, 2018 2:00 PM	/I MDT		
SAM round ta o Register	ibles are 30-minute i for free	nformal discus	ssions online wit	h the SAM team sche	duled every othe	r Thursday at 2:30	pm Mountain Time.
How-to \	/ideos s are short demonstr	ations of spec	ific tasks in SAM	Л.			
 Sizing a P50/P90 Import El Generate Ovenrice 	PV-plus-battery syste Analysis in SAM 20 lectric Load Data SDK code from SA	em in SAM 17.9.5 M					https://sa
Recordi	igs of Past V	Vebinars	2				

Video recordings and presentation materials are available for the following webinars.

Open Source Project

https://sam.nrel.gov/webinars

Presenter Bio

Mike Wagner

- Mechanical Engineer and Principal Investigator, 2009-current
- Author of SolarPILOT and several CSP models in SAM
- Other research includes system design, operations, and maintenance optimization; Next-gen CSP technology, gas phase HTF system development
- Author of 40+ conference and journal publications
- Education: BS/MS University of Wisconsin, PhD Colorado School of Mines

https://www.nrel.gov/research/michael-wagner.html

Acknowledgement: **Tim Wendelin**

- Lead author of SolTrace
- Sr. Engineer at SolarDynamics (2017-current)
- NREL (retired, 1984-2017)

SolarPILOT

Overview and recent development

<u>Solar Power tower Integrated Layout and</u> <u>Optimization Tool</u>

- Definition and characterization of power tower CSP solar fields
- Research and design tool for power tower optical subsystem
- User interface tied into detailed simulation code
- Developed at NREL with DOE funding
- Integrated into SAM as the power tower optical characterization engine

Wagner, M.J., and Tim Wendelin. "SolarPILOT : A Power Tower Solar Field Layout and Characterization Tool." *Solar Energy* 171, no. September 2018 (2018): 185–96.

T base_system_large-helio.spt						
Help	Receiver geometry			Receiver position		
Climate	Perceiver ture	Elat plate	• •	Receiver positioning offset - X axis	0	[m]
Markets	Receiver type		Receiver geometrica	Configuration & positioning offset - Y axis	0	[m]
Costs	Receiver height	8	L'incenter geometrie	Receiver positioning offset - Z axis	0	[m]
Plant	Optimize receiver height			Limit receiver namel snam angle		
avout Setun	Restrict receiver height range				400	
oursetup	Maximum receiver height	30		Min. receiver panel span angle	-180	
ats	Minimum receiver beight	5	[m]	Max. receiver panel span angle	180	[deg]
emplate 1			11	Receiver optical height	150.0	[m]
vers	Represent receiver as polygon			Optical properties		
D 1 1	Number of receiver panels	12		Allowable peak flux	800	[kW/m2]
ceiver 1	Receiver panel azimuthal orientation	0	[deg]	Receiver thermal absorptance	1.0	_
ns	Receiver orientation azimuth	0	[deg]			
ld Layout	Receiver orientation elevation	-40	[deg]	Thermal losses		
formance Simulation	For non-planar receivers, the receiver wi	l be orien	ted such that the	Design point receiver thermal loss	30	[kW/m2]
	specified elevation angle. Other panels v	n angle w vill be orie	ented along the arc of	Load-based thermal loss adjustment		
ametrics	specified radius lying within the rotated	receiver m	nidline plane.	0th order coefficient 1		[kWt/m^2]
	Receiver width	8	[m]	1st order coefficient 0		_
Results	Ortining constant with			3rd order coefficient 0		_
aires Elen Drafila	Optimize aperture width				10000	
ceiver riux Prome	Restrict aperture width range			Wind-b		
System Summary	Maximum receiver width	30	[m]			
	Minimum receiver width	5	[m]			
		D		0.0	1140	DTLO
	Aperture geometry shape	Rectang	ular	50	lar	NILO
	Receiver cavity curvature radius	7.75	[m]	*	1	TINDE
	Cavity curvature centroid offset	0	[m]			
	Receiver aspect ratio (H/W)	1.00			1	2 200
						The second se

What is SolarPILOT?

What it is...

A tool for

- creating heliostat field layouts and characterizing optical performance
- screening potential development sites
- optimizing solar field design parameters
- investigating heliostat performance in detail
- optical calculations using both ray trace and analytical routines
- use by researchers, developers, and universities

What it is *not*...

A tool for

- annual solar field production analysis
- power block or thermal energy storage simulation
- detailed cost analysis
- financial modeling
- ignoring due diligence
- always getting the right answer

Capabilities

- Create solar field layouts, or import heliostat positions manually
- Simulate optical performance of the solar field or of individual heliostats
- Simulate different receiver geometries, multiple receivers
- Characterize receiver flux profiles at different solar positions and irradiance levels
- Impose heliostat aiming algorithms for flux profile control
- Optimize a wide range of parameters for lowest cost of energy
- Plot field performance and flux intensity
- Script layout and simulation actions using LK
- Simulate with analytical & ray-trace methods
 - Direct integration with NREL's SolTrace

Standalone versus SAM-integrated tool

- SolarPILOT comes in two forms
 - Standalone tool that provides substantial functionality
 - SAM power tower characterization engine with limited functionality

Field layout process

To generate a new layout, SolarPILOT:

- **1. Collects** inputs and settings from the input pages.
- 2. **Pre-processes** the weather data or solar irradiance model to generate a set of simulation points for design evaluation.
- **3.** Generates a list of all possible heliostat positions that satisfy the land boundary and layout rules that you choose on the Layout Setup page.
- 4. Simulates the performance of the field including each possible heliostat in the layout from step (3) over the set of simulation points generated in step (2).
- 5. Sorts all possible heliostats by the performance metric that you specify in the Heliostat selection criteria field on the Layout Setup page.
- 6. Calculates the power delivered by each heliostat at the reference condition by running a single simulation using the reference values specified on the Layout Setup page.
- 7. Deletes heliostats in order of worst-performing to best-performing while the power delivered at the reference condition is still satisfied.

User-specified heliostat positions

A1		×		×		√ f _x	0									
4]	A	В		с		D	E	F	G	н	1	1.0	K	L	M	N
1	0		1		1	21.0549	128.742	(NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL
2	0		1		1	46.7597	121.784	(NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL
3	0		1		1	70.5159	109.752	(NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL
4.	0		1		1	91.3338	93.1454		NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL
5	0		1		1	108.345	72.6577	(NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL
5	0		1		1	120.843	49.1423	-	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL
7	0		1		1	128.304	23.5791	-	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL
5	0		1		1	128.304	-23.5791		NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL
9	0		1		1	120.162	-50.7832	-	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL
0	0		1		-1	106.327	-75,5811	-	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL
1	0		-		- 1	87.4535	-90./9//	-	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL
2	0	-	-			AS 2 CAS				- NILTER		- ALC IN T			NULL	NULL
3	0		C	οιι	ur	nn	Des	crip	otior	1			Un	ITS	NULL	NULL
-	0	_													NULL	NULL
5	0		1				Tem	npla	ite #				-		NULL	NULL
			2				Heli	ost	at is	ena	bled		-			
			3				Heli	ost	at af	t pos	itior	۱	-			
			4				Loca	atio	n (x)			m			
			5				Loca	atio	n (y)			m			
			6				Loca	atio	n (z)			m			
			7				Foca	al le	engt	h (x)			m			
			8				Foca	al le	engt	h (y)			m			
			9				Can	t ve	ecto	r (i)			-			
			1	0			Can	t ve	ecto	r (j)			-			
			1	1			Can	t ve	ecto	r (k)			-			
			1	2			Aim	pt	(x)				m			
			1	3			Aim	pt	(y)				m			
			1	4			Aim	pt	(z)				m			

To import a layout:

- Specify the receiver, tower, and heliostat properties
- On the Field Layout page, click "Import"
- The selected file must be formatted according to the guidelines in the help menu!

Performance calculations

- Ray Tracing (numerical)
 - Can model any surface-based geometry
 - Characterize flux intensity, directionality, and multiple surface interactions
 - Computationally intensive
- Analytical with Gaussian approximation
 - Rapidly compute flux characteristics and system efficiency
 - Ideal for use in layout and optimization calculations
 - Does not provide directionality detail
 - Not as accurate as ray tracing
- Two approaches are complementary

Climate	Simulate								
Karkets	performance	Calculation (0/0)							
Costs	Sun position			Sort P	eliostats by:	Slant range	• Simi	alate only select	d heliostats
A Lound Cature	Simulation time spec. method	Hour/Day	-	1	Geometry	Location	Padial por	Asim nos	Aim point
Cayour Serop	Diract Normal Irradiation	050	EW/m21		Template	50.2 171.2 0.0	17451-1	at a fide at	43 33 101 C
Heliostats	Check Hornal Instantion	324	fuctors	1	Template 1	+38.3, 121.2, 0.0	134.5 [m]	-25.7 [deg]	-4.3, 7.7, 101.3
	Month of the year	3		-	Template 1	126.2, 46.6, 0.0	134.5 (m)	-osc/ (beg)	A 17 1010
 Template 1 	Day of the month	20		12	Tamplate 1	66.2 117.0 0.0	134.5 [m]	150 5 [deal	5 2 71 1741
n. 1	buy or the month		600	1.2	Template 1	1221 -54.2.0.0	124.5 (m)	1128 [deg]	80.28 176
Receivers	Hour of the day	12	[hr]	1	Template 1	1211 201 0.0	124.5 [m]	-771 [deg]	.0 4 2 7 1071
D Basanas 1	Calculated solar azimuth angle	182.4	[deg]	7	Template 1	-129.0 -38.0 0.0	134.5 [m]	-106.4 [dea]	-87 -17 181
Macanel 1	Calculated solar elevation apple	551	Ideal	8	Template 1	-50.8 -124.5 0.0	134.5 [m]	-157.8 [dea]	-12 -8.2 184
Simulations			fordl	9	Template 1	50.8 -124.5 0.0	134.5 (m)	157.8 [dea]	3.2 -8.2 175
	Simulation exception			10	Template 1	131.1 30.1 0.0	134.5 [m]	77.1 [dea]	8.4. 2.7. 176.7
Field Layout	Summer Parameters			11	Template 1	58.3.121.2.0.0	134.5 [m]	25.7 [dea]	4.3.7.7.176.7
	Heliostat aim point method	Image size priorit	y 💌	12	Template 1	-1231 -54.2.0.0	134.5 [m]	-113.8 [dea]	-8.03.8. 174
Performance Simulation		1.61		13	Template 1	119.2, 62.3, 0.0	134.5 [m]	62.4 [deg]	7.5. 4.7. 181.9
Parametrics	Min. image offset from receiver edge - Y	2		14	Template 1	-119.2, 62.3, 0.0	134.5 [m]	-62.4 [deg]	-7.5, 4.7, 187.
N. Palaneuro	Min. image offset from receiver edge - X	2		15	Template 1	-80.7, -107.5, 0.0	134.5 [m]	-143.1 [deg]	-5.2, -7.1, 184
Optimization	A CONTRACTOR OF A CONTRACTOR O	Televenter		16	Template 1	-87.1, 102.5, 0.0	134.5 (m)	-40.4 [deg]	6.0, 6.4, 171
	with point distribution sempling	mingour		17	Template 1	87.1, 102.5, 0.0	134.5 [m]	40.4 [deg]	6.0, 6.4, 176.7
Results		11		18	Template 1	-73.3, 112.8, 0.0	134.5 [m]	-33.0 [deg]	-4.3, 7.7, 171.
	Flux simulation model	mermice (analytic	40 •	19	Template 1	-93.8, -96.4, 0.0	134.5 [m]	-135.8 [deg]	-6.8, -5.6, 172
Layout Results	Specify the maximum number of flux on	des in the horizont	al and vertical	20	Template 1	-99.5, 90.5, 0.0	134.5 [m]	-47.7 [deg]	-6.0, 6.4, 176.
Receiver Flory Profile	deections. This will apply to each receive	r flux surface.		21	Template 1	-110.2, 77.1, 0.0	134.5 [m]	-55.0 [deg]	-7.5, 4.7, 177.
	Flux arid resolution - Horizontal	25		22	Template 1	110.2, 77.1, 0.0	134.5 [m]	55.0 [deg]	7.5, 4.7, 187.1
System Summary				23	Template 1	129.0, -38.0, 0.0	134.5 [m]	106.4 [deg]	8.7, -1.7, 177.8
	Flux grid resolution - Vertical	25		24	Template 1	-66.3, -117.0, 0.0	134.5 [m]	-150.5 [deg]	-5.2, -7.1, 179
	Cloude			25	Template 1	99.5, 90.5, 0.0	134.5 [m]	47.7 [deg]	6.0, 6.4, 171.6
	III Charles also dana francisca			26	Template 1	-115.2, -69.5, 0.0	134.5 [m]	-121.1 [deg]	-8.0, -3.8, 181
	 Simulate cloud transient 			27	Template 1	73.3, 112.8, 0.0	134.5 [m]	33.0 [deg]	43, 7.7, 187.1
				28	Template 1	-105.3, -83.6, 0.0	134.5 [m]	-128.4 [deg]	-6.8, -5.6, 186.
				29	Template 1	34.5, -130.0, 0.0	134.5 [m]	165.1 [deg]	3.2, -8.2, 184.5

Field performance plot

- Displays heliostat positions, land constraints, and efficiency values for each heliostat.
- Interactive selection of heliostats and removal from layout (new)
- Data can be exported into tabular format

Flux and aim plots

- SolarPILOT generates flux intensity plots on the receiver surfaces
- The field can be simulated at any sun position or DNI value
- Plots can be scaled and adjusted for resolution
- The heliostat aim point plot illustrates the aiming strategy for the selected flux plot

SolarPILOT

Optimizing power tower systems

Optimization overview

- Power tower design is complex, with many trade-offs!
- Many input parameter values can be optimized
- SolarPILOT uses the <u>COBYLA</u> algorithm (part of the NLOpt library) to optimize the selected variables
 - Represents the objective function as a multidimensional linear surface within a local trust region
 - Incorporates nonlinear constraint (allowable peak flux)
 - SolarPILOT calculates the actual peak flux for a given design and compares it with this value
 - The objective function seeks to minimize pseudo LCOE

$$obj = \frac{cost_{tot}}{E_{expect}} \cdot \left(1 + \left(1 - \frac{\dot{Q}_{sf}}{\dot{Q}_{sf,des}}\right) \cdot R_{penalty}\right)$$

Add opt	timization variables	×
Search		
÷	Performance Simulation	
•	Receiver	
	Solar Field	
	Allowable blocking in slip plane	
	Azimuthal spacing factor	
	Azimuthal spacing reset limit	
	Design-point DNI value	
	Heliostat shading interaction limit	
	Heliostat spacing factor - X direction	
	Heliostat spacing factor - Y direction	
	Layout aspect ratio (Y/X)	
	Max. optical layout zone size - azimuthal	
	Max. optical layout zone size - radial	
	Maximum solar field extent angle	
	Min. optical layout zone size - azimuthal	E
	Min. optical layout zone size - radial	
	Minimum solar field extent angle	
	Optical layout zone mesh tolerance	
	Packing transition limit factor	
	Proximity filter fraction	
	Solar field design power	
	Specified design-point solar azimuth	
	Specified design-point solar elevation	
	Tower optical height	-
Expa	nd All Uncheck All OK Canc	el

Case study

- Consider a new plant near Phoenix, AZ
- An agricultural enterprise is selling cultivated land near transmission and with good DNI resource
- A developer would like to build a tower facility at the location, but needs to evaluate the property for power production potential, tower height, and tower location

SolarPILOT can help!

Case study steps: Live Demo

- 1. Identify the location, and download the weather file
- 2. Open SolarPILOT and specify parameters
 - Thermal power rating = 450 MWt
 - Climate file
 - Best guess tower height and position
 - Land constraint type
- 3. Create land geometry (Google Earth, e.g.)
- 4. Import land geometry and tower position
- 5. Run layout
- 6. Set up optimization table
- 7. Optimize
- 8. Apply (if satisfied)

Optimization variable settings	Initial	Lower bound	Upper bound	Initial step
Tower height [m]	150	None	None	10
Tower offset – x [m]	-200	-300	500	50
Tower offset –y [m]	400	-50	600	50

SolarPILOT

Scripting

Scripting

- SolarPILOT includes approximately 375 settings, input variables, and parameters that can be manipulated by the user
- A primary goal of the scripting interface is to provide a mechanism for assignment and retrieval of input and output parameters
- A wide range of tasks are achievable through scripting

Scripting examples

22

- Local soiling
- Cloud shapes
- Random templates
- Enabling/disabling

File Edi

04022

12

SolTrace

Overview and recent development

Overview

- A specified number of rays are traced from the sun through the system
- Each traces through the defined system while encountering various optical interactions
- Rays replicate real photon interactions and can therefore provide accurate results for complex systems that cannot be modeled otherwise
- Accuracy increases with the number of rays traced, and larger ray numbers means more processing time
- Organization:
 - The optical system is organized into "stages"
 - A stage is comprised of "elements" consisting of a surface, an optical interaction type, an aperture shape, and, if appropriate, a set of optical properties
 - Two characteristics completely define the "sun" as the light source: the angular intensity distribution of light across the sun's disk, referred to as the sun shape, and the sun's position.

Wendelin, Tim. "SolTrace: A New Optical Modeling Tool for Concentrating Solar Optics." *NREL/TP-5500-59163*. Golden, CO, 2013.

Recent work

- User interface
 - The interface has been ported from Qt to wxWidgets and C++
 - The new GUI is consistent with SAM, SDKtool, and other CSP tools
 - The interface features enhanced ray plotting and is more responsive
- Speed improvement
 - NREL modified SolTrace to improve run times for power tower systems

Speed improvement for point focus

- SolTrace provides general ray-tracing functionality that is slow for systems with very large numbers of elements (e.g., power tower heliostat fields)
- Computational expense is reduced by creating localized groups of elements, a small subset of which are retrieved for intersection testing based on the position of the random sun ray
- Elements are grouped by their projection onto the plane normal to the sun vector using a binary search tree

Speed improvement results

				New	Improve.
Case	# Elements	Description	Base [s]	Time [s]	Factor
1	100,512	Default SolarPILOT case, 500 MWt	11,672	6.7	1742x
2	100,512	Same as Case 1, afternoon sun position, θ = 23°, α =253°	8,325	6.4	1300x
3	6,282	Default SolarPilot case with single-facet heliostats	927	2.5	370x
4	95,174	Ivanpah-like solar field	6,531	9.6	680x
5	34,188	eSolar-like hexagonal field	5,447	6.1	893x
6	79,812	North field, mixed heliostats (small near tower, large outer ring)	6,683	6.2	1078x
7	60,127	Ivanpah Unit 2 solar field with random vertical heliostat displacement	4,042	3.7	1092x
8	60,127	Ivanpah Unit 2 solar field with high optical slope error (~10 mrads)	3,830	3.7	1035x

27

SolTrace

Modeling power tower optical performance

Creating SolTrace input from SolarPILOT

- Create a heliostat field layout with SolarPILOT
- Run a performance simulation with the analytical model to set aimpoints
- Select "Keep existing" for heliostat aim point method
- Select "SolTrace" for flux simulation model
- Export SolTrace .stinput file
- Open in SolTrace

Tracing and interpreting results

- Trace options should be customized for the analysis you are doing
- Make sure you run sufficient rays to achieve problem convergence
- Set the number of CPU's as desired
- For point focus systems, select the point focus option. This enables the speed improvement method.

Open source projects

Overview

Motivation

- We are excited to continue working on SolarPILOT and SolTrace and fostering a new community of contributors.
- Transparency
 - Look at the underlying code that you are interested in
- Flexibility
 - Change the way a model works for research purposes
 - Change heliostat geometries to be specific to a developer
- Collaboration
 - Add new heliostat or receiver models
 - Add new layout techniques or error distributions
- We'd love to learn how you use NREL's open-source code! It helps us tailor our efforts and get funding to develop the tools.

NREL releases

- NREL will continue to maintain and release official desktop versions of SolarPILOT and SolTrace.
 - Releases built from the open-source repositories
 - User contributions can be considered for inclusion in official versions

Code licenses

- Licensed under a mixed MIT-type license and GPLv3 license.
- Commercial businesses can use SolarPILOT, SolTrace, SSC and SAM under the MIT-type restrictions
 - You can use these in software you develop for your business.
- Research entities, including national labs, institutions of higher learning, and non-profits are restricted under a GPLv3-type license.
 - You can use the code in your research, but must make your changes publicly available.

Code licenses

- Why the mixed license?
 - Want to encourage companies to use SolarPILOT and SolTrace as a foundation for growing their business in a fairly unrestricted way.
 - Want to encourage research institutions to share back any new innovations or make them publicly available so that the community as a whole benefits.
- Please see full licenses here:
 - <u>https://github.com/NREL/SolarPILOT/blob/develop/LICENSE.md</u>
 - <u>https://github.com/NREL/SolTrace/blob/develop/LICENSE.md</u>

Open source projects

Retrieving and compiling code

SolarPILOT code architecture

SolTrace code architecture

Git repository locations

Repository	URL
wxWidgets	https://www.wxwidgets.org/downloads
WEX	https://github.com/NREL/wex
LK	https://github.com/NREL/lk
SSC	https://github.com/NREL/ssc
SolTrace	https://github.com/NREL/SolTrace
SolarPILOT	https://github.com/NREL/SolarPILOT

If you are new to Git and GitHub, please checkout: https://guides.github.com/

Build instructions

For detailed build instructions see the <u>SolarPILOT</u> or <u>SolTrace</u> wikis

General quick steps:

- Set up your development tools:
 - Windows: Visual Studio 2017 Community
 - Linux: g++ compiler
- Download the wxWidgets 3.1.1 source code
- Build wxWidgets and set environment variables
- For each dependency, fork and clone the repository into a local project folder, build the project, and then (Windows only) create environment variables
- Build the projects in order
 - SolarPILOT: wxWidgets, LK, WEX, SolTrace/coretrace, SolarPILOT
 - SolTrace: wxWidgets, LK, WEX, SolTrace/app
- This process can take some time, depending on computer speed

lichael 🕨	My Documents 🔸	NREL +	projects	•	
ibrary 🔻	Share with 🔻	New f	older		
	lk File folder				googletest File folder
	sam File folder				SolTrace File folder
	SolarPILOT File folder				ssc File folder
	wex File folder				

Open source projects

Contributing

Contributing to SolarPILOT, SolTrace, or SSC

First Steps

- Read contribution instructions:
 - <u>https://github.com/NREL/solarpilot/blob/develop/CONTRIBUTING.md</u>
 - <u>https://github.com/NREL/soltrace/blob/develop/CONTRIBUTING.md</u>
- Send an email to <u>solarpilot.support@nrel.gov</u> or <u>soltrace.support@nrel.gov</u> agreeing to the contribution policy

Second Steps

- Scope your change and estimate how much time it will take. If the contributions are small (i.e, bug fixes), simply submit changes via pull request.
- If contributions are large, you will need to submit a description of the change for review. If the contribution fits within the project goals, we will work with you to create a plan to get the change incorporated.

Knowing where to contribute

SolarPILOT consists of <u>several code repositories</u>, so you will need to determine where to make your contribution

- If you are making a change to the SolarPILOT's underlying performance algorithms, only the <u>SSC</u> repository is affected
- If you are adding a new feature that changes both calculations and the user interface, then both the SolarPILOT repository and the SSC repository are affected
- If you are adding scripting functionality, the SolarPILOT repository is affected. If modifying script language tools, the LK repository is affected.
- If you need help figuring out where your contribution should go, please let us know

Technical contribution process

1. Install your favorite Git client application

2. Create a fork of the repo (or all) to which you are contributing

3. Clone your fork(s) and build according to instructions

git clone https://github.com/NREL/lk git clone https://github.com/NREL/wex git clone https://github.com/NREL/soltrace git clone https://github.com/NREL/sol git clone https://github.com/NREL/solarpilot 4. Create a branch on the fork off of develop (new feature) or a tagged release (bug fix)

> \$ git checkout v1. v1.1.0 v1.2.0 v1.2.1

git checkout -b my-patch-branch

Technical contribution process

5. Make your code modifications

7. Commit and push changes to your branch

\$ git commit -a -m "adding bug fix for heliostat aiming vector"

\$ git push myremote my-patch-branch

6. Build and test affected projects

8. Start a pull request on GitHub. We will review, comment, and merge in official version

#11		Edit
Conversation 2 Commits 5 Conversation 2 Conversati	+8	-48
I simulated a flat reflective surface (10 x 10 m) that reflect rays onto a flat absorbing surface (10000 x 10000 m) (see attached Soltrace file). Face_face_flat.zip Looking at the distribution of reflected rays direction it is possible to notice that Soltrace consider a truncated normal distribution is signal (See attached figure).	Reviewers Suggestions Minganer2 At least 1 approving rev required to merge this p	Request iew is pull request.
3.5 \times 10 ⁴ Bivariate Gaussian σ = 40 mrad Soltrace σ = 40 mrad	Assignees No one—assign yoursel Labels None yet	e F
	NREL	45

More on branches

Branch	Access	Description	Branch from	Merge from	Merge to
master	admin	Current stable version		patch, release	
develop	SolarPILOT- RW	Bleeding edge development version		feature, patch, release	
patch	Contributors	Hotfixes for current major.minor release	Master @tag		master, develop, patch
release	SolarPILOT- RW	Next release version	develop	patch	master, develop
feature- <name></name>	Contributors	All new development	develop, feature- <other></other>	develop, feature- <other></other>	develop, feature- <other></other>

https://github.com/NREL/SolarPILOT/blob/master/CONTRIBUTING.md

Creating GitHub issues

If you discover a bug in the code, want to add a new feature, or have a question, use **GitHub issues** to tell us

C se	earch or jump to		Pull reque	sts Issue	s Marketplace	Explore			¢	+• 🗟•
RREL ,	/ SolarPILOT						O Unwatch ▼	4	🖈 Unstar 3	Fork 1
<> Code	Issues 0	n Pull requests 0	📰 Wiki	<u>III</u> Insight	ts 🔅 Setting	IS				
Visua	alization	of land be	oundari	es #1	9				Edit	New issue
() Closed	d ope	ened this issue on Apr	13 · 2 comments							
	comr	mented on Apr 13				+	· · · ·	As	signees	¢
	Cara internet halou	. The first income and		fault land	have denias (190	Nº 4- 01000) .	uisle sle e	No	one—assign you	rself
	correct radial lim	its.	ectly shows the de	fault land	boundaries (-180	0 10 180) 1	with the	Lal	bels	0
	For the second in them as if they w	nage, the land bounda ere (-180°,-175°).	ries have been ch	anged to (-175°,+180°). Ho	wever, the p	olot shows	Ы	ıg	
	1800 -							Pro	ojects	¢
	1600 -							No	ne yet	
	1400							Mi	lestone	ò
	1200							No	milestone	
	1000 -							No	tifications	
	600								∢ × Unsub	oscribe
	400 - <u>E</u> <u>2</u> 200 -							Yo	u're receiving noti u were mentioned	fications because
	0 (Jar							2 p	articipants	
	200								12	
	-400									

Thank you

www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

