

Exceptional service in the national interest

SAM Webinars 2017: PV Reliability Performance Model in SAM

Geoff Klise – Sandia National Laboratories Janine Freeman – National Renewable Energy Laboratory

> December 7, 2017 SAND2017-13406 TR

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

We will post a recording of this webinar on the SAM website

11 W	/ebinars and R	ound Tab							*	-		×
\leftrightarrow	C 🔒 s	ecure https://sa	m.nrel.gov/we	binars							☆ 💷	:
	-₹NI	DEI	. .						Login	Regist	er	ľ
	TIONAL RENEWAB	LE ENERGY LABORATORY	Syste	m Advi	sor Model	(SAM)				Searc	h	
	HOME	DOWNLOAD	SDK 🔻	SUPPORT	RESOURCES 🔻	CONTACT	ACCOUNT	ABOUT				
V	Vebinar	s and Rour	nd Tables	;								
pu	Iblished by Pa	aul Gilman on Thu, 20	015-05-21 14:51									
Ν	/ebinars	6										
		are one-hour lectur rebinar, click its nar			essions that cover vario	ous topics about \$	SAM. All webinars	are free and sta	rt at 2 pm	Mountair	i. To	
	 Modeling I Electricity Modeling I Sizing Pho 	Molten Salt Power	Tower Systems Bill Savings fo s, Thu Jul 13 20 , Thu Aug 10 2	, Thu May 18 20 or Residential an 017	ies, Wed May 17 2017 17 d Commercial Projects							
R	ound Ta	ables										
SA	AM round tab	oles are 30-minute ir	nformal discuss	ions online with	the SAM team.							
(Round tab 	le registration (Janu	uary - June 201	7): Free, every o	ther Thursday at 2:30 µ	om Mountain Tim	e.					
R	ecordin	gs of Past V	Vebinars									
Vie	deo recordino	gs and presentation	materials are a	vailable for the f	ollowing webinars.							
20	16 Webinars											_

- Modeling a Photovoltaic Battery System in SAM 2016.3.14
- Modeling a Residential Photovoltaic System in SAM 2016.3.14
- SAM Demonstration in Spanish, June 2016

2015 Webinars

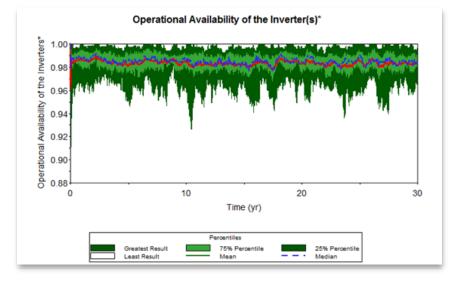
Battery Storage for Photovoltaic Systems, Sep 2015

https://sam.nrel.gov/webinars

If you have a question or comment:

- Type it in the Questions box.
- Click the "Raise hand" button.
- We may unmute your phone so you can ask your question or follow up.

	File View Help	
	- Audio	
	 ○ Telephone ● Mic & Speakers (test 	1
•	MUTED 400]
	Questions	5
Hard		*
1		
	[Enter a question for staff]	* +
	8	Send


Outline

- Introduction
- What is PV-RPM and why would I use it?
- Setting up a simulation
- Demonstration
- Analyzing Results
- References

What is PV-RPM and why would I use it?

ailure modes dashboard				
unure modes dushoodra				
Model Inputs				
Module Failure Rates	Module Repair Tim			
Instructions for Defining the Module Falure Rote Detailburies.	These values define the that a module has failed, module. (A lognormal dir distribution) mean 30 days	and to complete dribution is used	the repair or replaces	next of the failed
Estadon Fallers, Bate,	Do not repair/replac to see a graph of the log by these input parameter right and click on the "E window.	e wear-out failure normal distributi rs, citch the butto	in defined Mod	de Repair Time
Define the Batholi Cucos	Module Degradatio	n Rates		
20 N Modules But are affected by an early failure ablect. 0.5 p+1 Mean failure rate of modules that experience early failure. 23 pr Module mean lifetime.	Instructions For Defining The Module Degradation	Use the sam	e module degradation rat	
pr Standard deviation of module mean thetme.	 0 Mudule degrade		Samain Res Rate Exc Define the uniform of define the module do 01 supr minim	isitribution used to ogradation rate. num
		3	03 nga mani	
Inverter Inputs				
Inverter Failure Rates	Inverter Repair Tim			
Invester failures will be treabel in this example model as random events represented as a Poisson process. A Viangular distribution in used to define the invester failure rate projected number of failures per yan), toyof the minimum, med Takig, and maximum values to define the trangular disklaution. This trangular distribution will be he sample by the model and the sampled	These values define the distribution used to define mean 7 days	ne the inverter re	spair time.	ognormal
value will be used as the expected failure rate for the exponential Puisson failure mode.				
Transmater Distribution (for incorder failures rates)	To see a graph of the lo click the button below a	promat distribut end click on the "	on defined by these in Edit" button in the pop	iput parameters, ngi window.
1 pr.t. minimum value	Invester Repair Time			
2 yr t maet thely value 4 yr t maetimum value				

 Developed by SNL in 2010 as a proof-of-concept to evaluate PV performance impacts from probabilistic 'events' (faults/failures) impacting modules and inverters

 Goldsim player platform – limited evaluation capabilities (system configuration and failure mode types)

What is PV-RPM and why would I use it?

- Are you interested in how the failure of the following components impact power production, maintenance costs and LCOE?
 - Module
 - o String
 - DC Combiner
 - Inverter
 - AC Disconnect
 - Transformer
 - Tracker
 - External Grid Impacts

Setting up a simulation

Where to download PV-RPM for SAM

https://sam.nrel.gov/pvrpm

System Advisor Model (SAM)								Login Register
HOME	DOWNLOAD	SDK 🔻	SUPPORT	RESOURCES 👻	CONTACT	ACCOUNT	ABOUT	

Photovoltaic Reliability Performance Model (PV-RPM v2.0 Beta)

published by Paul Gilman on Fri. 2017-09-01 14:32

What is it:

Sandia National Laboratories (SNL) and National Renewable Energy Laboratory (NREL) have partnered to bring you this public Beta version of the PV Reliability Performance Model Version 2.0 (PV-RPM v2.0) that can be run from the LK scripting environment within SAM. This new feature is provided in SAM to allow users with reliability data the ability to develop and run scenarios where PV performance and costs are impacted from components that can fail stochastically.

The PV-RPM model was initially developed in 2010 by SNL as a proof-of-concept for better simulating the uncertainty when components experience faults or failures in a fielded PV system. As the events occur randomly, they can be represented as a probability distribution with specific parameters to define the severity of the event and when it may occur over a specific time-frame. Repairs or replacements are also represented with probability distributions, where the component remains in a failed state until the repair distribution is sampled and results in the component being returned to an operating state. In 2016, SNL partnered with NREL to move the PV-RPM algorithms from the proof-of-concept platform into SAM, via the LK scripting environment. Doing this allows users to see how the code works and gives them the ability to modify the code for their own purposes.

The code is available in SAM through an open-source license, with copyright asserted from the DOE Solar Energy Technologies Office on 12/16/2016. The copyright language can be found within each of the SAM LK script files..

To use it:

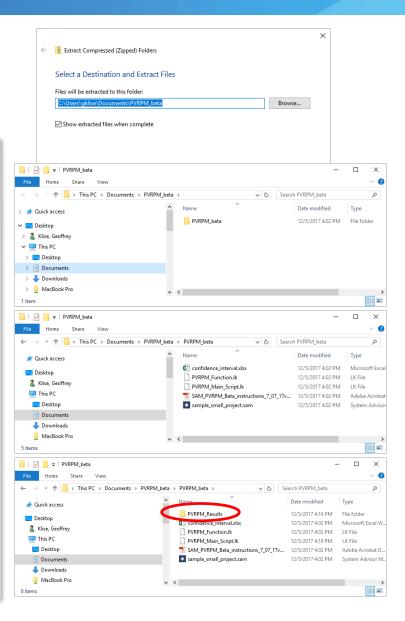
Please download the zip file (ZIP 2.7 MB) and read the included user manual for instructions on how to use PV-RPM v2.0 Beta

Important notes:

This feature runs on the Windows platform ONLY

• This feature is not supported by the SAM Support email address, please use the email address below for questions and problems!

Feedback, comments, and questions:


This model and instructions are still in a Beta release, so you should expect imperfections, bugs, and room for improvement. Please email Geoff Klise, the project lead at Sandia National Laboratories, with any questions, comments, bug reports, or suggestions. We value your feedback!

Tags: Photovoltaic

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Need Help? | Security & Privacy | Disclaimer

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer

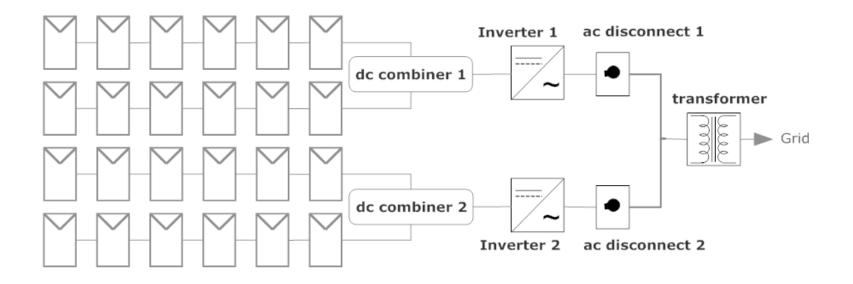
Default system parameters for PV-RPM

Table 2 –	Small s	vstem ir	nput	parameters
	ernan e	,		paramotoro

User Choice
USA AZ Phoenix (TMY2)
0.2 / Perez / DNI and DHI
SunPower SPR-X21-355-BLK
NOCT
SMA America: SB3800TL-US-22 (240V) CEC 2013
6
4
2
Fixed
20
180
0.3
None
5% for each month
2%
0.5%
2%
1%
PV simulation over analysis period
0% ⁱ
Check Box Not Selected ⁱ
Check Box Not Selected ⁱ
5 years

 $\mathsf{i}-\mathsf{this}$ will be defined in the script and discussed in a later section.

ii - Even though there are no loan, tax, insurance or salvage costs analyzed by the PV-RPM model, the analysis period needs to be set on this page, and the financial parameters chosen will affect SAM's calculation of the LCOE.

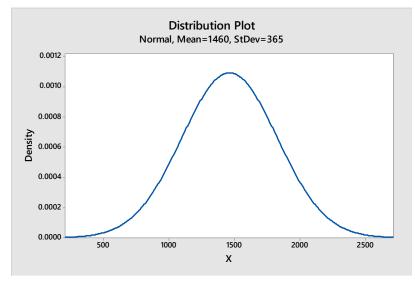

Layout of default PV system

Defined in main SAM window

- # of modules
- Modules per string
- Strings in parallel
- # of inverters

Defined in LK "Main Script"

- # of combiners
- # of transformers
- # of trackers
- Calculated AC disconnect 1 per inverter


Probability distributions used in SAM

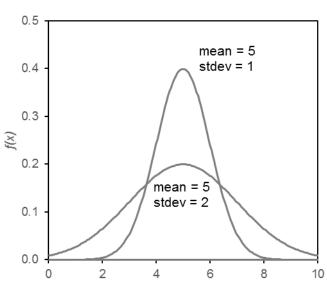
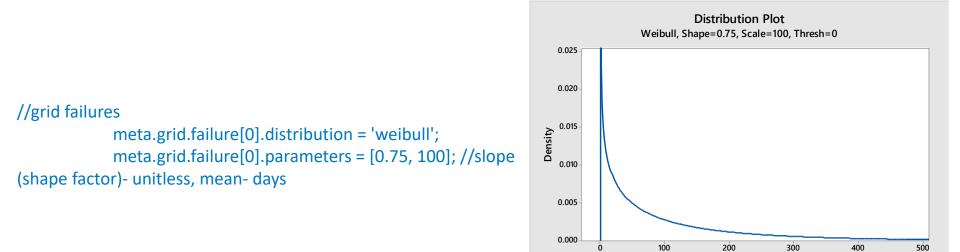
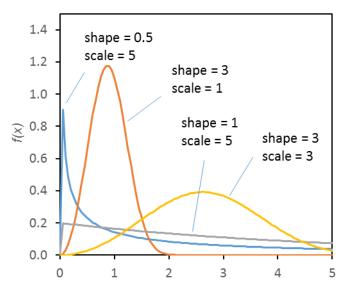

Distribution	First	Second	Third
	Parameter	Parameter	Parameter
Uniform	Min	Max	
Normal	Mean (mu)	Std. Dev.	
		(sigma)	
Lognormal*	Mean	Std. Dev.	
Lognormal-N	Mean	Std. Dev.	
Triangular	А	В	С
Gamma	Alpha	Beta	
Poisson	Lambda		
Binomial	Р	Ν	
Exponential	Lambda		
Weibull	Alpha or k	Beta or	
	(shape)	Lambda (scale)	

Table 1 – SAM LHS available distributions

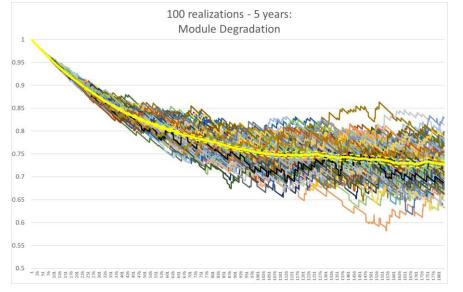
*The Sandia LHS library included in SAM requires mean and error factor inputs into lognormal function. The Lognormal-N function requires the mean and standard deviation of the UNDERLYING normal distribution. However, we anticipate that most users will have the mean and standard deviation of the actual lognormal distribution. Therefore, the LHS function implemented in the PV-RPM script translates from input mean and standard deviation to the error factor before calling the lognormal LHS function. The translation equations used can be found at https://dakota.sandia.gov/content/latest-reference-manual, Keywords>Variables>lognormal_uncertain.

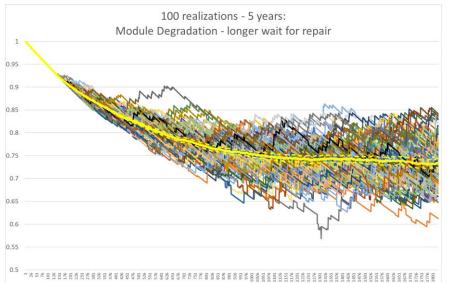

Distribution Examples



Normal Distribution

Distribution Examples



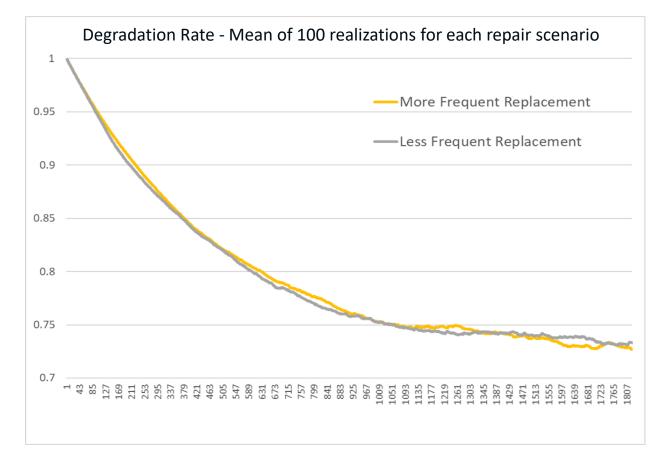

х

Demonstration

Analyzing Results

Degradation Analysis – accelerated example

20% module degradation rate, 5-year analysis with 100 realizations on base 4 kW (24 module) system.


- Default "lognormal" *repair* distribution for modules. Two failure distributions, one 'normal' (increasing failure rate), and one 'exponential' (constant failure rate).
- Mean (60), Standard Deviation (20) [days]

Plot shows Mean of 100 realizations plus upper and lower 95% confidence interval

- Changed repair distribution for modules
- Mean (200), Standard Deviation (20) [days]

Plot shows Mean of 100 realizations plus upper and lower 95% confidence interval

Degradation Analysis – accelerated example

More frequent replacement:

- Mean of 48 module failures over 5 years
- Mean Availability 0.93

Less frequent replacement:

- Mean of 57 module failures over 5 years
- Mean Availability 0.73

- User manual available in PV-RPM download
- https://sam.nrel.gov/pvrpm
- Sandia PV-RPM validation report <u>http://energy.sandia.gov/download/41153/</u>
- PV-RPM three system comparison (proof-of-concept) <u>http://energy.sandia.gov/wp-</u> <u>content/gallery/uploads/SAND2012-10342_final.pdf</u>
- Reliability and Availability study (proof-of-concept) <u>http://energy.sandia.gov/download/20994/</u>

Thank you

Geoff Klise - <u>gklise@sandia.gov</u> Janine Freeman – <u>Janine.Freeman@nrel.gov</u>

www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.