

Modeling Parabolic Trough Systems

SAM Webinar

Mike Wagner

June 18, 2014 1:00 p.m. MDT

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

SAM Webinar Schedule for 2014

Schedule

- New Features in SAM 2013 and Beyond
 - October 9, 2013: Paul Gilman
- SAM PV Model Validation using Measured Performance Data
 - December 11, 2013: Janine Freeman
- Solar Resource Data 101
 - February 12, 2014: Janine Freeman
- Analysis of Electricity Rate Structures for Residential and Commercial Projects
 - o April 16, 2014: Paul Gilman
- Modeling Parabolic Trough Systems
 - June 18, 2014: Michael Wagner
- Photovoltaic Shading Analysis
 - August 27, 2014: Aron Dobos

Details

- All sessions last one hour and begin at 1 p.m. Mountain Time
- You must register to participate
- Registration is free, but space is limited
- More details, registration information, and recordings of past webinars on Learning page of SAM website

https://sam.nrel.gov/content/resources-learning-sam

Overview of SAM Parabolic Trough Models

• Case study:

Molten Salt Trough w/ Dry Cooling

- HTF selection
- Modifying operating temperatures
- Loop configuration and sizing
- Power cycle design point specification
- Optimization of design parameters
- Optimization of TES and Solar Multiple

- Familiarity with parabolic trough technology components and configurations
- A basic understanding of thermodynamics, heat transfer, and fluid mechanics
- Some experience using SAM
- Particular interest in technology (vs. cost/financial)

Parabolic Trough Technology

Solar Field

SAM Trough Performance Models

• Physical

- Uses first-principle and semi-empirical models to calculate performance
- Allows modification of geometrical and optical properties to predict performance in new design spaces

Today's webinar uses the Physical Trough model

Empirical

- Performance based on empirical correlations from SEGS plant data
- Most accurate for SEGS-like configurations, temperatures, & sizes
- Much less computationally expensive than Physical model

Physical Trough sub-models

Inputs in SAM

Select Technology and Market... CSP Trough Physic Location and Resource Location: TUCSON, AZ Lat: 32.1 Long: -110.9 Elev: 779.0 m Solar Field Solar Multiple: 2 Number of Loops: 446 Aperture Area: 1.25852e+006 Collectors (SCAs) Receivers (HCEs) The performance model input pages are where you Power Cycle define the system's design parameters Nameplate: 150 MWe Rated efficiency: 0.4051 Thermal Storage Storage Hours: 6 Fluid Volume: 12548.4 Parasitics Performance Adjustment 09 Percent of annual output: 96 % Year-to-year decline: 0 % per year Trough System Costs Total Installed: \$ 962,038,262 Est. per Capacity (\$/kW): \$ 6,401 Financing Analysis: 25 years The Costs, Financing and Incentives pages Solution mode: Specify IRR Target Incentives determine the renewable energy system's cost (\$) Fed. ITC No cash incentives Depreciation 5-yr MACRS (Federal) 5-yr MACRS (State) Exchange Variables (For Excel Exchange and custom TRNSYS only.)

SAM Trough Demo

Molten Salt Trough with Dry Cooling

- Higher operating temperature than oil HTF's
- Gain in power cycle conversion efficiency
- Lower cost than oil
- More energy-dense thermal storage
- "Direct" thermal storage
- Substantially different thermal properties
- Higher freezing temperature
- Higher thermal loss
- More corrosive

• How much economic benefit can a moltensalt-based trough provide?

• What are the system-level design issues for a MS trough?

• What thermal storage size is most costeffective?

- 1. Configure receiver and collector components
- 2. Specify HTF and operating temperatures
- 3. Determine transport operation limits
- 4. Configure the loop
- 5. Specify power cycle design point
- 6. Specify thermal storage parameters
- 7. Update costs and financials
- 8. Optimize uncertain parameters
- 9. Optimize solar multiple and TES capacity

<u>Receivers (HCEs)</u>

- Loop thermal efficiency calculation uses the receiver Estimated avg. heat loss, which must be supplied by the user.
- Annulus gas type (1) = Air
 - We are modeling molten salt, so hydrogen permeation is not a problem.
- **Estimated average heat loss** = [310, 590, 4518,0]
 - These values can be calculated based on detailed collector performance models, or by running the model and inspecting the results near design-point conditions

<u>Collectors (SCAs)</u>

• Configuration name = Solargenix SGX-1

Heat Transfer Fluid Differences

- Viscosity, density, and heat capacity differ substantially
- Pressure loss higher in salt system at equivalent velocities

- Field HTF Fluid = Hitec solar salt
- **Design loop outlet temp =** 550°C
 - Field inlet temperature related to boiling saturation temperature
- Min/Max single loop flow rate
 - Primary concern is maximum pressure drop
 - Therminol VP-1 velocity range [0.36, 4.97 m/s]
 - Method (1): Manually try different loop lengths and flow rates in SAM
 - Method (2): Match pressure drops by iteratively solving pipe pressure loss equations...

Calculating pressure loss in a pipe

Moody Diagram

(1) Establish a reference pressure loss

- Use Therminol-VP1 settings to calculate a reference pressure loss
 - Use maximum Therminol velocity
 - Calculate Reynolds number
 - Look up friction factor on Moody Chart
 - Initial reference length is $l_{ref} = 1.0$
 - Solve pressure loss eqn. for ΔP_{ref}
- We will try to set up the salt loop to match this ref. pressure constant

 $V_T = 5\frac{m}{s}$ $Re_T = \frac{\rho_T V_T D}{\mu_T} = 1.39e6$

D = 0.066 m

 $f_{fT} = 0.011$

 $\Delta P_{ref} = f_{fT} (Re_T) \frac{\rho_T V_T^2 l_{ref}}{2D}$ = 1610 Pa

(2) Calculate salt mass flow rate

- Use energy balance to calculate mass flow rate
 - Absorption energy balance
 - First-law balance
- Need to guess number of SCA's!
 - o (will refine with iteration)

$$\dot{q}_{loop} = A_{sca} \, \eta_{abs} \, N_{sca} \, I_{bn}$$

$$\dot{q}_{loop} = \dot{m}_s \, c_{ps} \, \Delta T_s$$

$$\dot{m}_{s} = \frac{A_{sca} \eta_{abs} N_{sca} I_{bn}}{c_{ps} \Delta T_{s}}$$
$$= 6.4 \frac{kg}{s}$$

T A 7

$$I_{bn} = 950 \frac{W}{m^2} \qquad A_{sca} = 470.3 \ m^2$$
$$c_{ps} = 1520 \frac{J}{kg \ K} \qquad \eta_{abs} = 0.689$$
$$\Delta T_s = (550 - 293) = 257 \ C$$

(3) Calculate velocity and new length

- Calculate velocity for mass flow rate
- Calculate Reynolds number
- Look up friction factor
- Solve pressure eqn. for length
- The new length is used to update the estimate of No. of SCA's
 - Pressure highly nonlinear! Be conservative...

 $f(Re_{\rm s}) = 0.0195$

 $Re_s = \frac{\rho_s V_s D}{\mu_s} = 75254$

 $l_{ref}' = \frac{\Delta P_{ref} \ 2D}{\rho_s \ V_s^2 \ f_{fs}} = 5.75$

 $N'_{sca} = 46?$ $l'_{ref} = 2 \rightarrow N'_{sca} = 16$

(4) Finally.. Iterate to convergence on L

lter	\dot{m}_s kg/s	V _s m/s	<i>Re</i> _s	$f_{fs}(Re_s)$	ľ	N _{sca}
1	6.4	1.02	75254	0.0195	5.75	16
2	12.8	2.05	151247	0.0165	1.68	14
3	11.2	1.80	132802	0.017	2.11	16

- Number of SCA/HCE Assemblies = 14
- Max HTF Flow rate = 12.8 kg/s
- Min HTF Flow rate = 1.75 kg/s

Other Solar Field Settings

- Min/Max Header Velocity = [0.7 m/s, 1.2 m/s]
- Freeze protection temp = 260°C
 - Must maintain HTF above freezing temperature
- Number of field subsections = 8
 - Relatively large field, so increase divisions. Ultimately, a parametric simulation can be run to determine which layout is best

Power Cycle – Dry Cooling

- **Condenser type =** Air-cooled
- Ambient temp at design = 42°C
 - Condensing temperature is $T_{amb} + \Delta T_{ITD} = 58C$
- Rated cycle conversion efficiency
 - Prefer detailed external model, but... not always available
 - Reference cycle Molten Salt power tower w/ 550°C steam temperature at 41.2% gross efficiency
 - Assume 20°C salt-to-steam temperature drop
 - When in doubt, use Carnot scaling:

$$-\eta_1 = 1 - \frac{58 + 273.15}{550 + 273.15} = 0.5977$$
$$-\eta_2 = 1 - \frac{58 + 273.15}{530 + 273.15} = 0.5877$$
$$-\eta = 0.412 \frac{\eta_2}{\eta_1} = 0.4051$$

• **Design gross output =** 167 MWe

- Increase design gross until the estimated nameplate capacity meets the target
- Aux heater outlet set temp = 550°C
 - Not used in this example, but good practice
- Minimum required startup temp = 360°C
 - Trade HTF temperature for lower-efficiency cycle operation
 - Optimize!

- o Ensure HTF = Hitec Solar Salt
 - No intermediate HX is required
- o Tank height = 15
 - How reasonable is the calculated tank diameter?
- o Parallel tank pairs = 2
- Cold tank heater set point = 260°C
 - Match freeze protection temperature setting
- Hot tank heater set point = 525°C

Don't allow significant decay in hot TES temperature

- This example doesn't consider detailed cost information!
 - Minor changes to reflect updated HTF
- Storage cost = 30 \$/kWht
- **Power plant =** 1200 \$/kWe

Simulation & Results (in SAM)

Optimizing thermal storage and solar multiple

Optimizing...

PPA vs. Solar multiple (Par. 1)

Comparison: MS vs Oil trough

MS Optimized

Value		
746,036,992 kWh		
14.16 ¢/kWh		
16.80 ¢/kWh		
13.58 ¢/kWh		
19.35%		
1.43		
\$137,266,240.00		
1.00%		
50.00%		
56.70%		
0.93		
141,351 m3		
1961.13 acres		

Value		
349,266,368 kWh		
15.30 ¢/kWh		
19.24 ¢/kWh		
15.55 ¢/kWh		
19.50%		
1.44		
\$73,059,680.00		
1.00%		
50.00%		
39.90%		
0.93		
1,317,661 m3		
898.08 acres		