"NREL SAM – SUNDAT" INTEGRATION AN OVERVIEW

AUGUST 28^{TH} 2019

CSOL/

JAYA, LEAD ENGINEER

BRIEF ON SUNDAT

- Plugin for Sketchup 3D environment for automated and optimized solar design
- Allows user to design residential, commercial and utility scale sites based on industry design standards – NO SIZE LIMITS
- Automates a major portion of
 - Shadow simulation
 - Terrain Analysis
 - Module layout with parametric options using Cloud
 - Structural layout
 - Electrical Design
 - Yearly Shade for trackers on Terrain using cloud service
 - Energy modeling with NREL SAM

Tearly at	abe wi	or IC.1																						
Month	0:00	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00	18:00	19:00	20:00	21:00	22:00	23:00
																	52.46							
Мау																								
									35.48															
Dec	100	100	100	100	100	100	100	100	35.48	36.53	0	0	0	0	0.12	18.62	66.16	100	100	100	100	100	100	100

WHY NREL SAM?

- ✓ SDK Support
- ✓ Simple to pack with SunDAT Just 3 dlls
- Vast Module and Inverter Libraries Ability to create custom components
- ✓ Support for Trackers and Fixed Tilt Tables
- ✓ Shade Import Facility
- ✓ Weather file library
- ✓ Support for weather file formats import
- ✓ Fast computation of production and yield
- ✓ Computation with numbers rather than whole site

CHALLENGES

□ Challenges:

- Ruby SDK support was not there we used python base to develop Ruby SDK
- Large number of variables (250), modules and inverters mapping.
- User acceptance on taking SAM simulation values as final when compared to Pvsyst

Aodule Browser Data	Container S	Script Editor			
Dad/unload library Choose SSC libra	ry Load data file	Save data file			
ailable modules:	TYPE	DATA NAME	LABEL	UNITS	
glediode	11 SSC_INPUT	SSC_NUMBER en_ac_lifetime_losses	Enable lifetime daily AC losses	0/1	
glediodeparams	12 SSC_INPUT	SSC_ARRAY ac_lifetime_losses	Lifetime daily AC losses	%	
51853par	13 SSC_INPUT	SSC_NUMBER en_snow_model	Toggle snow loss estimation	0/1	
51853interp	14 SSC_INPUT	SSC_NUMBER system_capacity	DC Nameplate capacity	kWdc	
inarmod	15 SSC_INPUT	SSC_NUMBER use_wf_albedo	Use albedo in weather file if provided	0/1	
amv1	16 SSC_INPUT	SSC_ARRAY albedo	User specified ground albedo	01	
vattsv1	17 SSC_INPUT	SSC_NUMBER irrad_mode	Irradiance input translation mode		0=beam&diffuse,1=total&beam,2=total&diffus
vattsv1_1ts	18 SSC INPUT	SSC NUMBER sky model	Diffuse sky model		0=isotropic.1=hkdr.2=perez
vattsv1_poa	19 SSC INPUT	SSC NUMBER inverter count	Number of inverters		a secolo de construir
vattsv5	20 SSC INPLIT	SSC NUMBER enable mismatch ymax calc	Enable mismatched subarray Vmax calculation		
vattsv5_1ts	21 SSC INPUT	SSC NUMBER subarray1 ostrinos	Sub-array 1 Number of parallel strings		
eader	22 SSC INPLIT	SSC NUMBER subarray1 modules per string	Sub-array 1 Modules per string		
dproc	22 SSC INDUT	SSC NUMBER subarray1 mont input	Sub-array 1 Invester MPPT input number		
ityrate	24 SSC INDUT	SSC NUMBER subarray 1_mppr_mput	Sub-array 1 Tilt	dan	0. herizentel 00. vertical
ityrate2	24 SSC_INPUT	SSC_NUMBER Subarray Luit	Sub-array Filt Jatitude eventide	deg	0=nonzontai,90=vertical
ityrate3	25 SSC_INPUT	SSC_NOMBER subarray1_tilt_eq_lat	Sub-array 1 Titt=latitude override	0/1	0 NO0 5 400 0 370 N
tyrate4	26 SSC_INPUT	SSC_NUMBER_subarray1_azimuth	Sub-array 1 Azimuth	deg	0=N,90=E,180=S,270=W
ualoutput	27 SSC_INPUT	SSC_NUMBER_subarray1_track_mode	Sub-array 1 Tracking mode		U=fixed,1=1axis,2=2axis,3=azi,4=monthly
aloan	28 SSC_INPUT	SSC_NUMBER subarray1_rotlim	Sub-array 1 Tracker rotation limit	deg	
dpartyownership	29 SSC_INPUT	SSC_NUMBER subarray1_shade_mode	Sub-array 1 shading mode (fixed tilt or 1x tracking)	0/1/2	0=none,1=standard(non-linear),2=thin film(line
ppa	30 SSC_INPUT	SSC_NUMBER subarray1_gcr	Sub-array 1 Ground coverage ratio	01	
eseq	31 SSC_INPUT	SSC_ARRAY subarray1_monthly_tilt	Sub-array 1 monthly tilt input	deg	
partflip	32 SSC_INPUT	SSC_NUMBER subarray1_shading:string_option	Sub-array 1 shading string option		0=shadingdb,1=shadingdb_notc,2=average,3=r
partflip	33 SSC_INPUT	SSC_MATRIX subarray1_shading:timestep	Sub-array 1 timestep beam shading losses	%	
leaseback	34 SSC_INPUT	SSC_MATRIX subarray1_shading:mxh	Sub-array 1 Month x Hour beam shading losses	%	
t developer	35 SSC_INPUT	SSC_MATRIX subarray1_shading:azal	Sub-array 1 Azimuth x altitude beam shading losses	%	
Copy table to clipboard	36 SSC_INPUT	SSC_NUMBER subarray1_shading:diff	Sub-array 1 Diffuse shading loss	%	
copy table to cipboard	37 SSC_INPUT	SSC_ARRAY subarray1_soiling	Sub-array 1 Monthly soiling loss	%	

SAM\2018.11.11\win32\sscx32.dll Version 209, Windows 32 bit Visual C++ May 21 2019 00:22:16

IMPLEMENTATION

□ Implementation:

- Picked 'pvsam1' Photovoltaic (Detailed) with No Financial Model module for automation
- Used SSC SDK Tool for mapping variables to SunDAT variables
- Created a sample sdk script for simulating SunDAT Values by following

• Converted this implementation to Ruby for SunDAT Simulation

SAM 2018.11.11: C:\Users\FTC-Jaya\Bo	ox Sync\SunDAT Resources\Personnel\Jaya\NREL Presentation\	MN-14-0035-Hellma	n.sam						_	o ×
File 🗸 🕀 Add 🛛 1axis-bter	nable 🗸 1axis-bt-disable 🖌 1axis-bt-	disable-acr.1								Help
Photovoltaic, No financial	CEC Performance Model with Module Database 🗸	2								^
Location and Resource	Filter: Name ~									
Module	Name	Technology	Bifacial	STC	PTC	A_c	Length	Widt ^		
Inverter	MEMC Singapore MEMC-Q320AMC-36 MEMC Singapore MEMC-Q320BZC-3Y	Multi-c-Si Multi-c-Si	0	322.770000	285.700000	1.956000	1.976	0.99		
System Design	MEMC Singapore SE-F320BZC-3Y MEMC Singapore SE-M320BZC-3Y	Mono-c-Si Mono-c-Si	0	320.915000 320.915000	287.500000 287.800000	1.610000 1.610000	1.626 1.626	0.99		
	MEMC Singapore MEMC-M325BZC-3Y MEMC Singapore SE-F325BZC-3Y	Mono-c-Si Mono-c-Si	0	328.500000 325.006000	289.700000 292.200000	1.956000	1.976 1.626	0.99		
Shading and Layout	MEMC Singapore MEMC-M330BZC-3Y	Mono-c-Si	0	334.657000	294.300000	1.956000	1.976	0.99		
Losses	<	wono-c-Si	-	550.126000	296,900000	1.610000	1.020	> ~		
	Module Characteristics at Reference Conditions									
	Reference conditions: Total Irradiance = 1000 W/m	2, Cell temp = 25 C								
	Method Single Die School Cost	Bifr. 40 T	Nomin Maximum p Max power vo Max power c Open circuit v Short circuit acial Specificatio Module is bifacia ransmission fract Bifacia nd clearance hei	all efficiency 20.5 piower (Pmp) 3300 urrent (Imp)	048 % Tempa 128 Wdc 37.6 Vdc 88 Adc 46.2 Vdc 9.2 Adc 1 1	-0.340 -0.360 %/*C	-1.51 -0.15 0.00	19 W/°C 77 V/°C 86 A/°C		
	Temperature Correction									
	Nominal operating cell temperature (NOCT) method Heat transfer method			OCT method paramete Mountin	g standoff Ground	or rack mounted		~		
Simulate >	See Help for more information about CEC cell temperature	models.		Ar	ray neight One sto	ry building height	or lower	~		
Parametrics Stochastic P50 / P90 Macros	Heat transfer method parameters Mounting configuration Rack			Ro	ows of modules in a	array	1			~

LAYOUT RUNS WITH PARAMETRIC INPUT

🔋 C:\Users\FTC-Jaya	Desktop\Rippey Solar - 7860 Str 062719.skp						-	0 X
						jrajasekara	n@ftcsolar.com ~	0 0
>							📕 Cust	omize
	Choose one or more regions for this layout opera	tion		Select the tables/blocks to be us	sed Varametric?			
	R_01 ×			Voyager - 28mod str - 385W	V × Voyager - 20 str cmb - 385W -	35GCR ×		
ع ا								
	Mode of module alignment			Azimuth [°] 🕨 🖌 Para	ametric?	Skew [°] Parametric	3	
	Uniform Non-uniform			175 180	1			
	Depth of layout algorithm			Start Point		Target System Size		
	Quick Normal Detailed			Origin	•	0	kWDC	-
T								
			ew e —	iap ←				
fas.								
	North-South Spacing Parametric?			East-West Spacing	metric?			
	3 m +	4.5 m -	0.25 m	Gap - 7	m + 8.5	m +	0.25 m	
				Fix Inverter Quantity				
	Choose an Inverter (for Energy Analysis)	Parametric?		Target DC/AC Ratio	ametric?			
<u> </u>	SMA_SC_3000-EV			1.2	1.3	0.2		
	Additional layout configuration							
	Additional North-South Gap			Additional East-West Gap				
	every	iype	Gap	Type				
	4	KOWS -	20 m	None				
	Half frequency for first NS Gap?							

ENERGY VALUES FOR EACH LAYOUT

:\Users\F	ſC-Jaya∖Desktop	p\Rippey S	50lar - 7860 Str - D	C Complete 062	2719.skp														_	
																	👤 jraja:	sekaran@ftcsol	ar.com 🗸	?
۰ ا	DV Lavout	_																		
•	PV Layout																			
	Run	Results																		
																Group Parame	tric Results			
	Version	Region	Generation Type	Tables/Blocks	ns_gap [m]	Add.NS Gap	ew_gap [m]	GCR	pitch [m]	Azimuth	Module	Mod Qty	Size (kW)	Inverter	Inv Qty	DC/AC Ratio	Production (kWh)	Yield (kWh/kWp)	Cost/Watt (\$)	Time S
	1.0	R_01	Auto	Voyager - 20	3	Every 2 rows	7.47	35	11.492	180	Canadian	224000	86240	SMA_SC_3000-	23	1.25	153045264	1774.644	5974060.456	06/20/2
				str cmb -		with 20m					Solar			EV						16:35:4
				35GCR(400)		Rah					385MS									
				,							1500V									
	1.1	R_01	Manual	Voyager - 20	3	Every 2 rows	7.47	35	11.492	180	Canadian	208320	80203.2	SMA_SC_3000-	21	1.27	141776928	1767.722	5556517.759	06/20/2
				385W -		gap					CS3U-			LV						20.20.3
				35GCR(372)		0-1					385MS									
											1500V									
	2.0	R_01	Auto	Voyager - 20	3	Every 4 rows	7.47	35	11.492	180	Canadian	227920	87749.2	SMA_SC_3000-	23	1.27	155153904	1768.152	6078428.029	06/27/2
				str cmb -		with 20m					Solar			EV						14:44:5
				385W -		gap					CS3U-									
				35GCR(407)							385MS									
											1500V									
	3.1	R_01	Manual	Voyager - 20	3	Every 4 rows	7.47	35	11.492	180	Canadian	220080	84730.8	SMA_SC_3000-	23	1.23	150808544	1779.855	5869620.475	06/27/2
				str cmb -		with 20m					Solar			EV						
				385W -		gap					CS3U-									-
				35GCR(393)							385MS									

CUSTOMIZABLE INPUTS 1 – SYSTEM DESIGN

🔁 C:\Users\FTC-Jaya\Desl	ktop\Rippey Solar - 7860 Str - DC Complete 062719 <i>.s</i> kp	- 🗆 X
		💽 jrajasekaran@ftcsolar.com 🗸 😨 💿
<u>,</u>		✓ Customize
	Choose Weather Source file (Name Source Distance (Km)	Select weather file format to import local file
	USA TX Dallas-fort Worth Intl Ap (TMY3) TMY3 74	ТМУЗ
₽	System Design Shading And Losses Module Values Inverter Values	
	Select region to load values	Name plate capacity [kWp]
	R_01 +	84730.8
	Tilt[deg]	Azimuth[deg]
	0	180
۵	Track Mode	Tracker Rotation Limit(deg)
	1 Axis 👻	60
	GCR	Module Orientation
	0.36	Portrait 👻
	Nameplate loss [%]	Modules per string
	-0.006	28
	Inverter count	Strings in region
	23	7860
	No of Modules along bottom of row	Rows per table
	56	2
<u>(11)</u>	Shading Mode	
	None -	

CUSTOMIZABLE INPUTS 2 – SHADING AND LOSSES

ទ C:\Users\FTC-Jaya\Desl	ktop\Rippey Solar - 7860 Str - DC Complete 062719.skp	- 0	×
		🚺 jrajasekaran@ftcsolar.com 🗸 📀	
<u>></u>		Customize	
	Choose Weather Source file (Name Source Distance (Km)	Select weather file format to import local file	
	USA TX Dallas-fort Worth Intl Ap (TMY3) TMY3 74 -	TMY3 *	
T	System Design Shading And Losses Module Values Inverter Values		
सीत करने होता. बात ते हो सीत बात ते हो सीत बात तरह कर सार कर कर कर सार कर कर कर	Use Albedo in weather file	Irradiation mode	
	No ~	Beam and diffuse -	
	Monthly albedo		
6 1	0.2.0.2.0.2.0.2.0.2.0.2.0.2.0.2.0.2.0.2		
	Monthly soiling losses(%)		
	1,0,1,0,6,0,4,0,6,10,8,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		
	Transposition Model	Mismatch loss [%]	
	Pieles and connection loss (%)	DC Mining loss (%)	
		1.5	
	Tracking error loss (%)	DC Power optimizer loss [%]	
	0.5	0	
	AC wiring loss [%]	Step-up Transformer loss (%)	
	0.5	1.5	
	Constant loss [%]	Estimate loss from snow coverage	
	1	No ·	

CUSTOMIZABLE INPUTS 3 - MODULE VALUES

🖻 C:\Users\FTC-Jaya\Deskt	op\Rippey Solar - 7860 Str - DC Complete 062719.skp	– 🗆 X
		👔 jrajasekaran@ftcsolar.com 🗸 📀 🕤
<u>,</u>		✓ Customize
	oose Weather Source file (Name Source Distance (Km)	Select weather file format to import local file
#	ISA TX Dellas-fort Worth Intl Ap (TIMY3) TIMY3 74	TMY3
	System Design Shading And Losses Module Values Inverter Values	
	Module Area [m2]	Temperature coefficient of lsc [A/ [*] C]
	1,984	0.0053476999999999995
	Temperature coefficient of Voc [V/*C]	Temperature coefficient of Pmp [%//°C]
	-0.1488	-0.37
(Max power current[imp] [A]	
	9.57	
	Short circuit current[lsc] [A]	No of cells in series
	10.09	72
<u> </u>	Nominal operating cell temperature [°C]	Max power voltage(Vmp) [V]
	43.6	40.2
	Open circuit voltage[Voc] [V]	Cell type
	48	monoSi -
	Mounting standoff	Array Height
	Ground or rack mounted	1 story or less 🔹
	Bifacial?	
	No	

CUSTOMIZABLE INPUTS 4 – INVERTER VALUES

😫 C:\Users\FTC-Jaya\Desktop\Rippey Solar - 7860 Str - DC Complete 062719.skp	- 🗆 X
	🚺 jrajasekaran@ftcsolar.com \vee 🛛 🕤
	✓ Customize
An and a state of the state of	Select weather file format to import local file
USA TX Dallas-fort Worth Intl Ap (TMV3) TMV3 74	TM/3 •
Max AC Power [Wac] 3000000	Max DC Voitage [V]
Weighted/Peak/Nominal Efficiency [Wdc]	AC Power consumption of night [Wac]
DC Power required to enable the inversion process [Wdc]	DC Input Voltage for Rated AC Power [Vdc]
Min mppt voltage [Vdc]	1092 Max Mppt voltage [Vdc]
956	

REPORTS

Total Power

Inverter

86240

SunDAT Production Report

	Site Details	_	Simulation results:										
Name	Rippey		Region Nam	ne		R_01							
Latitude	33.552701		Performanc	e Ratio	0.825%								
Longitude	-97.176923		Capacity Fa	ctor	20.258%								
Timezone	-6		Yield			1774.644 kWh/	<w .<="" td=""><td></td></w>						
Solar North	0		Production			153045264 kWł	ı						
Adjustment	0.478												
Location													
Address	965 W Spring Creek Rd,				Monthly I	Energy Data:							
	Gainesville, TX 76240, USA		Month	GHI(kWh/m2)	POA(kWh/m2)	Shaded(kWh/m2)	NamePlate(kW)	Grid(kW)					
Client	Sterling & Wilson		January	71867	91798	91798	7549451	6772559					
Country			February	104255	142247	142247	11801171	10877811					
Azimuth	180		March	134049	173801	173801	14019371	12713738					
Tilt	0		April	136517	169171	169171	13379958	11866544					
Sim	ulation parameters	J	Мау	205236	260492	260492	19734266	18122952					
Module]	June	165312	204524	204524	15188120	14067438					
Name	Canadian Solar		July	210707	271225	271225	20365885	18770282					
	CS3U-385009/		August	178391	235437	235437	17529888	16232504					
Manufacture	er Canadian Solar		September	137911	174763	174763	13330865	12320579					
Nominal pov	ver 385 W		October	120027	158797	158797	12357664	11381743					
Sub array			November	105409	146826	146826	11674378	10749983					
In series			December	88066	123124	123124	10043297	9169133					
In parallel	8000		December	88000	123124	123124	10043237	9109133					
Number of	224000												
modules													

Export 8760 values

Select All	
Global Horizontal Irradiance	•
Beam irradiance	
Diffuse Irradiance	
Wind Speed	
Ambient Temperature	•
Solar Zenith Angle	
Solar Altitude Angle	
Solar Azimuth Angle	
Sun Up Over Horizon	
Absolute Air Mass	
Albedo	
Subarray 1 Angle of incidence	
Subarray 1 Surface tilt	•
Subarray 1 Surface azimuth	
Subarray 1 Axis rotation for 1 axis trackers	
Subarray 1 Ideal axis rotation for 1 axis trackers	
Subarray 1 POA total irradiance (nominal)	
Subarray 1 POA total irradiance after shading only	
Subarray 1 POA total irradiance after shading and soiling	
Subarray 1 POA beam irradiance after shading and soiling	
Subarray 1 POA diffuse irradiance after shading and soiling	
Subarrav 1 Ream irradiance chading factor	

QUESTIONS ?

