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Introduction 
This user manual is intended to provide instructions to volunteer beta testers on how to use Sandia 

National Laboratories (SNL) PV Reliability Performance Model (PV-RPM) features in the National 

Renewable Energy Laboratory (NREL) System Advisor Model (SAM) version 2017.1.17 r4 (NREL, 2017). 

This new feature is provided in SAM to allow users with reliability data the ability to develop and run 

scenarios where PV performance and costs are impacted from components that can fail stochastically. 

This is intended to be an advanced user feature as it requires knowledge and data regarding different PV 

component failure modes. It also relies heavily on the SAM LK scripting language, which is not utilized by 

a majority of SAM users. NREL has published a SAM LK users guide (Dobos, 2017) and has multiple on-

line help topics and videos to get users familiar with the scripting language and what it can do. 

This user instruction manual will provide some background on how data collected from a PV system can 

be used as inputs in the PV-RPM model, which will give data owners the ability to develop their own 

reliability and repair distributions outside of the example provided here. 

Background 
The PV-RPM model was initially developed in 2010 by SNL as a proof-of-concept for better simulating 

the uncertainty when components experience faults or failures in a fielded PV system. As the events 

occur randomly, they can be represented as a probability distribution with specific parameters to define 

the severity of the event and when it may occur over a specific time-frame. Repairs or replacements are 

also represented with probability distributions, where the component remains in a failed state until the 

repair distribution is sampled and results in the component being returned to an operating state.  

The previous platform was limited in its ability to simulate components other than PV modules and 

inverters. System design characteristics and the types of failure distributions available for use were also 

limited in the previous version.  

In 2016, SNL partnered with NREL to move the PV-RPM algorithms from the proof-of-concept platform 

into SAM, via the LK scripting environment. Doing this allows users to see how the code works and gives 

them the ability to modify the code for their own purposes. The code is available in SAM through an 

open-source license, with copyright asserted from the DOE Solar Energy Technologies Office on 

12/16/2016. The copyright language can be found within each of the SAM LK script files distributed with 

this instruction manual. 

The algorithm was thoroughly tested in SAM to ensure that the addition of these new features would 

not impact the SAM source code, and to ensure consistency in results between theoretical scenarios 

analyzed in the proof-of-concept and new SAM version of PV-RPM. This testing was completed primarily 

in 2016. The PV-RPM model was also validated using real data from a large PV system, where 

comparisons were made between the number of failures captured by the proof-of-concept and the 

number of failures estimated by the new SAM version. System behavior was also analyzed, comparing 

failure and energy loss results considering repairs, or leaving components in a failed state. This provided 

additional certainty that the bottom-up modeling approach, where every component item can be 

subject to failure and repair, worked as designed. The results of these efforts are outlined in more detail 

by Klise et al. (2017), which is also provided in the e-mail to beta testers. More references on the 

background of this effort, including links to supporting research can be found in this paper. 
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1. Types of Distributions Available for Analysis 
As SAM uses the Sandia Latin Hypercube Sampling method for Monte Carlo analysis, the probability 

distribution function inputs are limited to that implementation. For more information on the LHS code, 

see the SNL Dakota user manual.1 Table 1 shows the distributions that can be used in PV-RPM, though 

not all will be used for reliability analysis. The name of the parameters necessary for describing the 

distribution is also provided. More detail on the reliability distributions is provided in Appendix A. 

Table 1 – SAM LHS available distributions 

Distribution First 
Parameter 

Second 
Parameter 

Third 
Parameter 

Uniform Min Max  

Normal Mean (mu) Std. Dev. 
(sigma) 

 

Lognormal* Mean Std. Dev.  

Lognormal-N Mean Std. Dev.  

Triangular A B C 

Gamma Alpha Beta  

Poisson Lambda   

Binomial P N  

Exponential Lambda   

Weibull Alpha or k 
(shape) 

Beta or 
Lambda (scale) 

 

*The Sandia LHS library included in SAM requires mean and error factor inputs into lognormal function. The Lognormal-N function requires the 

mean and standard deviation of the UNDERLYING normal distribution. However, we anticipate that most users will have the mean and standard 

deviation of the actual lognormal distribution. Therefore, the LHS function implemented in the PV-RPM script translates from input mean and 

standard deviation to the error factor before calling the lognormal LHS function. The translation equations used can be found at 

https://dakota.sandia.gov/content/latest-reference-manual, Keywords>Variables>lognormal_uncertain.  

2. Running a Simple Model 
This section provides instructions on how to run a reliability scenario “out of the box” using the two LK 

scripts along with the SAM file that was provided for analysis. Later sections and the Appendix provide 

detail on how to change reliability distribution parameters, along with a discussion on how reliability 

distributions can be developed and validated using time-interval failure and repair data. Users of SAM 

should be familiar with the PV model technical reference (Gilman, 2015) 

2.1 SAM and Base Input 
The first step is to ensure the proper version of SAM is installed. To do that, open SAM and look at the 

announcements banner. Just above that, you will see a box in “red” that will let the user know that a 

newer version of SAM is available. The user can also click on the “Check for Updates” box to get the 

latest release. In Figure 1 below, you can see that r2 is installed, though a newer minor update is 

available. The major release associated with the PV-RPM code is SAM 2017.1.17, and the release version 

at the time of this document is r4. The PV-RPM scripts will not work with earlier major release versions 

of SAM.  

                                                           
1 https://dakota.sandia.gov/content/latest-reference-manual  

https://dakota.sandia.gov/content/latest-reference-manual
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Next, save the “sample_small_project.sam”, “PVRPM_Function.lk”, “PVRPM_Main_Script.lk,” and 

“confidence_interval.xlsx” files to the same folder location. 

 

Figure 1. SAM model dashboard 

 

Next, open the file “sample_small_project.sam” to get started. This file has a small example system pre-

built to allow the user to explore the code without having to build a new system in the SAM dashboard. 

Many of these are defaults for specific SAM model types. In this case, we are starting with the 

“Photovoltaic (Detailed): Residential (Distributed)” performance model. The LK script PV-RPM model 

requires the performance simulation to be run in “lifetime mode”, meaning that SAM simulates the 

performance for every year in the analysis, and not just the first year with derating factors applied in 

subsequent years. This means that only the Detailed PV model can be used, as lifetime mode is not 

available for PVWatts. The following inputs in this file are presented in Table 1 as a summary for the 

user. If specific areas and input values are not presented below, then default values from the scenario 

are assumed. 

Table 2 – Small system input parameters 

Model Input Steps User Choice 

Location and Resource  

TMY USA AZ Phoenix (TMY2) 

Albedo – Sky Diffuse Model - Irradiance 0.2 / Perez / DNI and DHI 

Module (CEC database)  

Manufacturer and Model SunPower SPR-X21-355-BLK 

Temperature Correction NOCT 
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Inverter (CEC database)  

Manufacturer and Model SMA America: SB3800TL-US-22 (240V) CEC 2013 

System Design (4 kWdc)  

Modules per String 6 

Strings in Parallel 4 

Number of Inverters 2 

Tracking Fixed 

Tilt (deg) 20 

Azimuth (deg) 180 

Ground Coverage Ratio 0.3 

Shading None 

Losses (Only Subarray 1)  

Irradiance - Soiling 5% for each month 

Module Mismatch 2% 

Diodes and Connections 0.5% 

DC Wiring 2% 

AC Wiring 1% 

Lifetime PV simulation over analysis period 

Module Degradation Rate 0%i 

Enable lifetime daily DC Losses Check Box Not Selected i 

Enable lifetime daily AC Losses Check Box Not Selected i 

Financial Parameters  

Analysis periodii 5 years 
i – this will be defined in the script and discussed in a later section. 
ii - Even though there are no loan, tax, insurance or salvage costs analyzed by the PV-RPM model, the analysis period needs to be set on this 
page, and the financial parameters chosen will affect SAM’s calculation of the LCOE. 

 

In the “Lifetime” area, you may notice a new box with “Lifetime Daily Losses.” This was implemented in 

the last major version as a way to allow the reliability model to represent the downtime associated with 

faults or failures of any of the components being simulated. The LK PV-RPM model passes the DC Losses 

and AC Losses to this input to allow for the time component of the outage to be used in determining 

energy loss and the effect on system costs. This is different than the “Curtailment and Availability” box 

on the “Losses” page where these are used to schedule specific events that occur at the same time 

every year. The PV-RPM script will automatically set the length of these loss arrays to match the number 

of days that are specified in the “analysis period”- in this example case, 1852 days (5 years). Likewise, 

the PV-RPM script will also automatically set these inputs with the values calculated by the PV-RPM 

script, so the user should not enter anything for this option. 

  

Figure 2. Loss inputs utilized by PV-RPM 
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2.2 LK Script Input 
The next step involves opening the project scripts. For the reliability model to run, only the 

“PVRPM_Main_Script.lk” needs to be opened. The “PVRPM_Function.lk” script should not be changed 

by the user. However, experienced users of LK can change the output file parameters in the Function 

script in the very last section “Calculate Statistics and Write Results” if there are specific results that may 

be of interest that are not in the .csv output files. 

Open the script by going to File/Open script. From here, navigate to the folder where the .sam and two 

.lk scripts reside. Open the “PVRPM_Main_Script.lk” file. 

 

Figure 3. File Window 

 

Opening the file in the LK environment will allow the script to be run within SAM. The top of the file 

should look somewhat like Figure 4. If the other script is not in the same folder location, an error 

message will show up in the lower dialog box. From here, the user needs to set a folder for the .csv 

results files. On line 48, set the path including the folder location. In this example, the script will place all 

the output files in a pre-existing folder named “pvrpm_results”. Those who have seen demos of the LK 

PV-RPM script know that realization graphs pop up after a simulation. These are turned off on line 49 as 

the Monte Carlo sampling can result in too many open dialog boxes. To turn these graphs back on, 

simply change the variable “show_realization_graphs” to ‘true’. In some instances, too many open 

graphs may cause the script to fail so it is recommended to the user to create multiple “cases” or use 

the standalone DView software for visualizing results. Later, we will show a few examples programmed 

into the code that allows the user to visualize some of the timeseries results outside of the data 

provided in the .csv file (Section 2.3.1).  

Line 50 contains “number_of_realization_cases”. This allows the user to specify if they would like the 

script to create new SAM cases representing specific stochastic realizations. If 
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“number_of_realization_cases” is set to 0, the PVRPM script will not create any new cases, but if it is set 

to a number n greater than zero, the script will create cases for the first n realizations that it runs, so 

that the user can take a more detailed look at what some of the realizations look like. A SAM case is 

considered a complete set of input data and results, like tabs on a worksheet. Since the input data is the 

same, the stochastic results can be analyzed for up to 10 cases/realizations on the SAM dashboard. 

 

 

Figure 4. File location and realization graphs in LK script 

 

2.2.1 Additional Setup Inputs 
The next set of inputs have to do with additional system details that are not included in the main SAM 

dashboard. These are the number of DC combiners, number of transformers and number of trackers. 

Financial inputs such as the labor rate for O&M activities associated with a failed component, and 

inflation rate for looking at future costs of repair can also be changed here. The tracker failure algorithm 

input is explained later in this manual. 

 

Figure 5. Additional component information and financial inputs in LK script 

 

Figure 6 below illustrates how the system is currently configured, with circles showing the additional 

features added to the base model in SAM through the LK script. These components need to be defined 

here even if not simulated with failure modes in the model. Stand-alone transformers are not typically 
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found in small residential systems, though one is included in the small system demonstration model. 

Trackers are not included in the base model as Figure 1 indicates that this is a fixed-tilt system. Whether 

the tracker can fail or not can be controlled later in the script. For now, the number of trackers will be 

entered here as “2” for a later scenario as presented in Section 2.4. An AC disconnect is not an input, but 

it is available to model and matches the number of inverters. 

 

Figure 6. Layout of small PV system for demonstration model 

 

2.2.2 Stochastic Analysis Inputs 
This section defines how many realizations to run for the simulation. Figure 7 shows the code for the 

stochastic analysis inputs. To be able to calculate a desired exceedance probability (p_value), at least 2 

realizations must be run. To calculate the confidence interval around the mean of multiple realizations 

(conf_interval), two or more realizations must be selected. If the desired confidence interval is 95%, 100 

realizations is suggested. The Latin Hypercube Sampling method within the Monte Carlo analysis 

provides good sampling results with fewer iterations as it creates equal sampling intervals within the 

probability distribution that are each sampled, rather than just randomly sampling the entire 

distribution.  

Note that although SAM runs hourly simulations, the PV-RPM model calculates failures and repairs in 

time steps of days. Therefore, all of the input data units should also be in “days”. So any failure or repair 

distribution has to be developed with that specific time unit in mind. 

 

Figure 7. Stochastic analysis inputs in LK script 
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2.2.3 Module Inputs 
The reliability model inputs for PV-RPM start at the module level. The user can turn the failure and 

repair modes (can_fail and can_repair) on or off by changing true to false (Figure 8). The paper by Klise 

et al. (2017) shows resultant failure and energy production behavior when repairs are turned off and 

failures can be measured over time on a decreasing population of operable components.  

 

Figure 8. PV Module inputs in LK script 

 

The next two lines, 127 and 128 address module warranty. The user can specify that the component has 

a warranty from the start of the simulation, or not, and determine how long that warranty will last 

before it expires. During that warranty time, it is assumed that the cost of the equipment replacement is 

covered, however the labor is not. After that period, both equipment cost and labor cost will be applied 

to that component. Lines under each failure mode allow the user to enter the labor time and 

component cost. The labor rate is already assigned for the entire simulation, as shown in Figure 5. It may 

be more realistic to have separate labor rates per failure mode type. 

More than one failure mode can be assigned and more than one repair distribution can be assigned if 

there are multiple failure modes. Each failure mode is represented by a number starting at [0], [1]… [n]. 

Each failure mode must contain the four parameters “distribution” (selected from Table 1), 

“parameters” (the parameters associated with the selected distribution, also defined in Table 1), “labor 

time”, and “cost”. Repair distributions, on the other hand, only require the “distribution” and 

“parameters” to be specified. If only one repair distribution is defined, then all failure modes will be 

repaired using the same repair distribution. However, it may be desirable to have different types of 

failures matched with different repair distributions. For example, cycling faults would likely be 
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represented with a distribution that has a quick response time as the inverter may cycle without having 

a repair technician on-site, but other failures may be considered catastrophic and would fall under 

“defective failures” and may take longer to repair as the part may need to be ordered, or fixed later with 

an on-site warranty repair. To represent this in the PV-RPM script, the user must specify the same 

number of repair distributions as failure distributions, and in the same order. Matching the index value 

in the failure and the repair will ensure that when the component fails due to failure type [n], it is 

repaired with failure distribution [n].  

To represent defective-type failures (i.e. failures that will only occur for a subset of components that are 

defective, rather than for all components) a user may specify an optional fifth parameter “fraction” in 

the failure distribution, as shown on line 110 above. “Fraction” specifies the fraction of the total 

population of that component type that is assumed to be defective. In this example, 20% of the modules 

will be eligible to fail per the exponential failure type [n].  

The example model has titles for failure modes 1 and 2, which are just illustrative of how one might use 

comments to help keep track of different failure distributions.   

Syntax is important here, so when changing data inputs, having the right brackets, semi-colons and 

single quotes is important.   

The degradation rate is also available here for modules. Note that with the way the PV-RPM script is 

currently written, only PV modules are allowed to degrade. The PV-RPM script degradation is a 

substitute for the degradation specified in the SAM user interface. If any degradation is specified in the 

user interface other than 0, the PV-RPM script will throw a warning and can overwrite that input with 0 

if the user agrees. The reason that the PV-RPM script handles degradation separately from the 

degradation input in SAM is that the SAM degradation input assumes that the degradation is constant 

for a whole year. We wished to show a more continuous degradation throughout the lifetime of the 

project, and also to be able to calculate how replacing modules might actually improve the fleetwide 

degradation rate. For that reason, fleetwide module degradation is calculated on a daily basis in the PV-

RPM script and rolled up as part of the daily DC losses input, rather than entered into the degradation 

input in SAM. To enable module degradation, “can_degrade” should be set to true, and the annual 

degradation rate should be specified in the “rate” parameters in units of percent per year.  

The two failure distributions for the small system demonstration are normal and exponential. The repair 

distribution is lognormal. Appendix A provides a discussion on translating the distribution parameters in 

terms of severity and time, and which parameters are more appropriate for certain failure modes. A 

user that will be analyzing their own data and developing distributions from that data will want to 

review the Appendix. 

2.2.4 String and DC Combiner Inputs 
Both String and DC Combiner (called “combiner” in LK) inputs are added in a similar manner as modules 

(Figure 9). String failures are generally due to cabling issues, where wire is damaged or the connection 

has come apart. DC Combiner inputs would be any issue with fuses, circuit breakers, busbars, circuitry, 

internal disconnect and internal wiring, starting where the wiring terminates in the combiner box, and 

before the combined wiring enters the inverter. In cases where the combiner is integrated with the 

inverter, it is up to the user to decide whether to model these separately, or ignore the combiner 
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altogether and create a failure mode within the inverter to represent the combiner portion, as long as 

any issue on the combiner side would stop all power flow to the inverter. 

PV-RPM does not currently have the ability to model recombiners/subcombiners. 

 

Figure 9. String and Combiner inputs in LK script 

 

2.2.5 Inverter Inputs 
The inverter script inputs are generally the same as modules, strings and combiners, but in this example 

script there is one additional cost consideration for what are considered ‘routine’ failures, which could 

be classified as nuisance tripping events, or other events that may be high frequency, but low in terms 

of energy loss ‘consequence.’ The user can set the inverter size and cost thresholds for this type of 

failure (Figure 10). The user can even choose to comment out this section and only look at one type of 

event and repair mode, or one failure mode with no repairs.  See Section 2.3.2 below on how to 

comment out lines of code. Using the index feature [0], [1]…[n] allows the user to match specific repair 

distributions to failure events.  

The line above each failure mode here is just descriptive text describing each failure mode. The example 

script that says ‘routine failures’ is only an example; the failure and associated repair distribution are not 

taken from fielded PV inverter data. Rather, they are just examples for this user guide.  
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Figure 10. Inverter inputs in LK script 

 

2.2.6 AC Combiner and Transformer Inputs 
Just like other components shown above, AC disconnects combiner and transformer events can be 

simulated. The AC disconnect number matches the number of inverters. There is no separate AC 

combiner component in PV-RPM, however, depending on the system configuration, the transformer 

failure and repair distributions can be utilized for an AC combiner. Only one failure mode is shown 

below, however additional failure modes can be added as shown in the module and inverter sections.  
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Figure 11. AC Combiner and Transformer inputs in LK script 

 

2.2.7 Grid Inputs 
PV-RPM gives the user the ability to stochastically simulate grid impacts, where the grid is essentially 

‘unavailable’ for accepting energy (Figure 12). For users that want to look at scheduled curtailment and 

scheduled O&M events, that can be done in the main SAM user interface using the “Availability and 

Curtailment” inputs.  

 

Figure 12. Grid inputs in LK script 

 

For grid events that may potentially impact the inverter, AC disconnect or transformer, a failure 

distribution would need to be developed for that component and not the grid failure mode. 

2.3 Running a Simulation and Results 
After entering inputs for each component and failure mode, the model should be ready to run. If there 

are comments in the dialog box and a red vertical bar next to the code line number, that means there is 

a syntax issue that needs to be addressed (Figure 13). In this case, the exponential distribution is missing 

the denominator. In addition, the code will not inform the user if there is an issue with the desired path 
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to store the created .csv output files (rather, it will store the files EXACTLY where the erroneous path 

specifies), therefore it is important to review the syntax as shown in Sections 2.2. and 2.2.2. 

 

Figure 13. Error Message in LK script example 

To run the model, press “Run>” in the top blue bar of PVRPM_Main_Script.lk. 

The PV-RPM script draws several of its inputs from the SAM file that a user has created, including the 

number of modules per string, number of strings in parallel, number of inverters, etc. At this time, the 

PV-RPM LK script is limited to “regular” systems- meaning that there is a constant, integer number of 

modules per string, strings per combiner, combiners per inverter, disconnects per inverter, and inverters 

per transformer. The PV-RPM function does some error-checking of the SAM file that the user has set 

up, to try and prevent the script from crashing. If inputs are discovered that will make the PV-RPM script 

fail, message boxes appear alerting the user to the error and advising how to fix it. In some cases, logic is 

built into the script that enables the script to fix the error automatically and the user simply has to 

approve the fix. 

While the user is running simulations, the PV-RPM script interacts with the SAM user interface (users 

may notice that sometimes this causes switching back and forth between the user interface and the 

script). Three inputs are set in the SAM user interface by the PV-RPM script for each realization: 

• Daily DC losses: an array of losses that represents the combined effect of module degradation, 

module failures, string failures, DC combiner failures on the DC power delivered to the inverters. 

• Daily AC losses: an array of losses that represents the combined effect of inverter failures, AC 

disconnect failures, transformer failures, and grid failures on the AC power delivered just past 

the point of interconnection. 

• Fixed Annual O&M Costs (on the System Costs page): an array of costs incurred each year due to 

repairing failed components. 

If the SAM user has specified that some realization cases be created, new cases will be created while the 

script is running, and these inputs will be set in those cases. If no realization cases are to be created, or 
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the number of realization cases has already been exceeded, these inputs will be set in the “base case” 

(the original user-specified case). After setting these inputs, the LK script runs the simulation in the SAM 

user interface, and then pulls output results from that simulation. Most of the output results are stored 

in memory, but the time series AC power (in kW), DC power (in kW), degradation, as well as the annual 

O&M costs by component, are stored in temporary .csv files in the same folder as the results will go for 

memory management purposes. This process repeats for the number of realizations specified by the 

user. After all the realizations are complete, the script uses the results stored in memory to calculate 

output statistics (described in Section 2.3.3). It also combines all the temporary .csv files into the final 

.csv output files and deletes the temporarily created ones. (If the script fails in the middle of the 

realizations for any reason, these temporary files may not be deleted automatically and the user will 

have to delete them manually). Lastly, the script re-sets the base (original user-specified) SAM case back 

to its original state. 

After running the model, the dialog box at the bottom of the script will provide some summary data on 

annual O&M costs as well as failures per realization (Figure 14). At the bottom of the output, the total 

runtime is shown. This data is also presented in the output .csv files along with additional data on 

power, energy, mean time to failure and summary statistics. 

 

Figure 14. Failure results and costs per realization 

 

2.3.1 Utilizing DView Graphs 
DView is a time series viewer included in SAM that can also be downloaded separately.2 Utilizing the 

stand-alone viewer will allow a user to view some of the output .csv files presented below in Section 

                                                           
2 https://beopt.nrel.gov/downloadDView 
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2.3.3. For this section, we present the ability to toggle plotting per realization either on or off. Changing 

the ‘false’ to ‘true’ on line 20 will allow DView to plot results per realization for DC and AC Equipment 

Operation (like an operational availability), and DC and AC Power. Figure 13 below shows results of 

these outputs for two realizations. Each realization will have different results as each failure and repair 

event is sampled from a probability distribution. These graphs can be useful for analyzing behavior over 

a few realizations before choosing to run 100s of simulations. Other plots can be created using DView 

graphs in the “PVRPM_Function.lk” script by users that are familiar with the scripting language and 

referring to the LK scripting guide (Dobos, 2017). Note that the graphing display algorithm may 

sometimes create spikes above 1 when zoomed out sufficiently- if one zooms in on the spikes shown in 

Figure 13, it will become apparent that the value in fact never exceeds 1. 

 

Figure 13. DView Output for Equipment Operational State and Power (Both DC and AC) 

This graphic presents results some insight into how power production is impacted from component-level 

outages. The top two graphs are representations of the fraction of power that can be delivered as a 

function of a specific component or group of component outages. The bottom two are system DC and 

AC power in kW over the same time period. In this example, AC disconnect, transformer and grid 

outages all would appear to be the same in the ‘daily factors’ fraction, where a value of zero indicates 
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that no power can be delivered to the grid, whether the issue is on the grid side or on the PV side 

downstream of the interconnection location. This is also shown in the bottom set of graphs where the 

AC power drops to zero, though DC side production remains intact.  On the DC side, it is a little easier to 

interpret which components are failing: the smaller dips in the top graphs are module failures, and the 

larger dips would represent a whole string or DC combiner failing in this system. 

It is important to note that these graphs are not showing individual component failures (although those 

can sometimes be inferred from the magnitude of the step changes in the top plots), but rather the 

cumulative power impacts as measured at a specific point in the system. The DC power and availability 

graphs should be interpreted to be the sum of the power delivered immediately before the inverter 

inputs, and the AC power and availability graphs should be interpreted as the power measured at a 

point immediately past the interconnection to the grid. 

2.3.2 Commenting out Code 
To have a section of code completely ignored in the calculations, it can be commented out using the 

following methods in Figure 14. This is useful if the user wants to switch between failure modes for 

different simulations. For example, the code below on the left has two failure modes and two repair 

modes. The code on the right has the second failure and repair mode commented out to make the code 

only run through the “normal failures” case. 

 

Figure 14. Code with two failure and repair modes (left) and one commented out (right) 

 

Using the forward slash (/) and star (*) as shown on the right side of Figure 14, the “defective failures” 

failure and repair distributions are turned off and only the “normal failures” failure and repair 

distributions will run. As stated earlier, to turn off all reliability functionality for a particular component, 

change the meta.module.can_fail to ‘false’ instead of ‘true’.  

2.3.3 csv result files 
Currently, results are presented in five .csv files: 

• Timeseries_DC_Power.csv 
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• Timeseries_AC_Power.csv 

• Daily_Degradation.csv 

• Yearly_Costs_By_Component.csv 

• PVRPM_Summary_Results.csv 

 

Timeseries_DC_power and AC_Power provide hourly results over the entire time period for each 

realization. For the example files, there are DC and AC power results for 5 years (43800 hours).  

 

Daily_Degradation provides daily results of the module degradation factor, expressed as (1 - 

degradation percentage). This was included for analysis of PV modules to help analyze situations where 

the degradation rate resets for modules that have been replaced. If a user wants to run a simulation 

with a high module failure rate which may represent a serial defect, then the degradation rate over the 

lifetime of the system can be estimated based on the fact that new modules will then degrade at a 

different rate than those that are not replaced. 

 

Yearly_Costs_By_Component shows, for each realization, the breakdown of the O&M costs for each 

component, for each year of the analysis, as well as the total O&M cost for that year (the sum of the 

costs by component). 

 

The PVRPM_Summary_Results file has summary statistics results as presented in Tables 3 and 4. The csv 

file presents the file as a matrix, which can increase the rows and columns depending on the number of 

years, realizations and component failure modes assigned for a simulation. Table 3 provides detail on 

the output parameter, and table 4 provides detail on the output results for each row, primarily the 

summary statistics for each parameter result. 

 

Table 3 – Summary Results Output Parameters (columns in csv file) 

Rows starting with [component] indicate that the metric described is presented for every component in 

the system (modules, strings, DC combiners, inverters, AC disconnects, transformers, and the grid) 

Parameter Description 
LCOE Real Levelized cost of energy, as calculated by SAM 

[component]_failures_by_type_0* The number of component failures by failure mode index [0] 

[component]_failures_by_type_n* The number of component failures by failure mode index [n] 

[component]_total_failures The total number of component failures for all failure modes 

[component]_mtbf** The mean time between failure (in days) for component failures, 
defined as the total uptime for that type of component divided 
by the total number of failures of that type of component. ***If 
there are no failures, it is the total uptime for the system 
lifetime. 

[component]_availability The availability of the component, considering uptime and 
downtime. 1 – (daylight downtime / Total number of daylight 
hours per simulation). Downtime is defined during periods 
where the PV system should be operational. E.g., at times when 
the irradiance level can power up the inverter. 
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annual_energy_1 Annual AC energy produced for year 1 (kWh) 

annual_energy_n Annual AC energy produced for year n (kWh) 

cumulative_ac_energy_1 Cumulative energy produced through year 1 (kWh). For year 1, 
this will be equivalent to annual_energy_1 

cumulative_ac_energy_n Cumulative energy produced through year n (kWh). For example, 
cumulative_ac_energy_3 would be equal to the sum of the 
annual energy output from years 1, 2, and 3 combined 

DC_energy_1 Annual DC energy produced for year 1 (kW) 

DC_energy_n Annual DC energy produced for year n (kW) 
*Note that if only one failure mode is defined for a component, then only the total_failures column will appear in the results file 

**Interpreting the MTBF should be done with caution as the failure mode selected may not be representative of a ‘constant’ failure rate. This 

should only be used to describe a failure rate when it is known that the component is not in either early wear out or end of life stages. 

*** Mean time between failure definition found at http://www.weibull.com/hotwire/issue94/relbasics94.htm 

 

Table 4 – Summary Results (rows in csv file) 

Result Description 
Base Specific parameter value for the base case simulation with all failure and repair 

distributions turned off (useful for comparison) 

Realization_1 Specific parameter value for the first realization in the simulation 

Realization_n Specific parameter value for the nth realization in the simulation 

Min The minimum value of all realizations for a specific parameter 

Max The maximum value of all realizations for a specific parameter 

Mean The mean value of all realizations for a specific parameter 

Median The median value of all realizations for a specific parameter 

stdev Standard deviation of all realizations for a specific parameter 

XX% Lower Conf 
Int of Mean 

The upper confidence interval of the mean of all realizations for the specific 
parameter based on the confidence interval chosen by the user 

XX% Upper Conf 
Int of Mean 

The lower confidence interval of the mean of all realizations for the specific 
parameter based on the confidence interval chosen by the user (two-sided, so 
choosing 95%, results in 5%; 80 % results in 20%, for example) 

PXX Exceedance probability result of all realizations for specific parameter based on P 
value chosen by the user 

 

These results are available in a .csv file, located in the path the user defines within the top lines of code 

in PVRPM_Main_Script.lk. This information can be then plotted in an application of the user’s choice. 

One example below is the cumulative annual energy production, using the mean and upper/lower 95% 

confidence interval value.  

  

http://www.weibull.com/hotwire/issue94/relbasics94.htm
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Figure 15. An Example of a Post-Processed Plot using Output Data 

2.4 Simulation with Tracker Failure Enabled 
If the user specifies a single-axis tracking system instead of a fixed-tilt system, there are a few additional 

considerations. At this time, single-axis tracking systems must be flat (zero degree tilt in the main SAM 

System Design page), due to the way that the power loss is calculated (explained below). Additionally, 

while SAM can currently model up to four subarrays with different orientations and tracking types, the 

PV-RPM script is constrained to only one subarray if single-axis tracking is involved, due to the 

complexity of the power loss calculation. 

Unlike other system component failures, a tracker failure does not fully shut off the output from 

anything upstream of it. For example, if a string fails, none of the modules connected to that string can 

deliver power, but if a tracker fails, the modules on the tracker can still deliver a modified amount of 

power.  

PV-RPM has two methods built in to represent the modification of power: a worst-case assumption and 

a best-case assumption.  

• In the worst-case assumption, the tracker fails at its rotation limit facing west, north, or 

northwest (depending on the system azimuth).  

• In the best-case assumption, the tracker fails flat, or “in stow” facing upwards with no tilt.  
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Which assumption to use can be set using the “use_worst_case_tracker” input in 

PVRPM_Main_Script.lk. Note that tracking systems will typically fail in one of those two positions, so 

they represent reasonable assumptions. 

To determine how much power is lost due to a failed tracker, the LK PV-RPM algorithm is as follows: 

Pre-calculate the benefit of the tracking system: 

1. Run a base case simulation (no failures) with all trackers operating normally. 

2. Run the same simulation, but with 100% of the trackers stuck for the entire year in the desired 

position (in effect, this is simulating a fixed tilt system at the failed position). 

3. For each day, calculate the ratio of the energy produced by the “failed” system to the energy 

produced by the normally operating system- this is the “benefit” D that the tracker provides to 

the system. 

a. Note that these values are calculated on a daily basis because PV-RPM runs on a daily 

basis. 

During a realization: 

4. On a given day that a tracker has failed, find the corresponding daily “benefit” in the pre-

calculated daily array, then apply a loss that is linearly proportional to the number of trackers 

that have failed, following the equation: 

 

𝑃𝑜𝑤𝑒𝑟 𝐿𝑜𝑠𝑠 𝐹𝑎𝑐𝑡𝑜𝑟 = 𝐷 + 𝑋(1 − 𝐷) 

 

where: D is the ratio of energy production without trackers to energy production with trackers, 

and X is the fraction of operational trackers. 

5. Multiply the calculated power loss factor with the normally calculated degradation and DC 

power loss factors (due to module, string, and DC combiner failures) to get the total DC Daily 

Loss for that day. 

As an example, on a given day, imagine that the two pre-calculated simulations showed 1000 kWh of 

energy with trackers, and 900 kWh of energy without trackers. Therefore, 900/1000 kWh (90%) of the 

power would have been garnered even if the entire system were stuck in the fixed position. The extra 

100 kWh (10%) is the extra “benefit” due to the tracking system on that day. However, if only 25% of the 

trackers are failed on that day, then the system is assumed to see 75% of the 100 kWh benefit of a fully 

operational tracking system. Plugging this into our equation above: 

𝐷 =
900

1000
= 0.9 

𝑃𝑜𝑤𝑒𝑟 𝐿𝑜𝑠𝑠 𝐹𝑎𝑐𝑡𝑜𝑟 = 𝐷 + 𝑋(1 − 𝐷) =  0.9 + 0.75(1 − 0.9) = 0.975 

In our example, if the 25% of failed trackers were the only DC power loss occurring on that day (no other 

DC failures and no module degradation), then the system would produce 0.975 ∗ 1000 𝑘𝑊ℎ =

975 𝑘𝑊ℎ of power on that day. 
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Note that having trackers failed flat may actually increase the system power production in rare instances 

where the majority of the irradiance is diffuse. This is because flat panels will see a higher portion of the 

sky dome than tilted panels throughout the day, resulting in a greater ability to use the diffuse light. 

One other note is that in the current implementation, tracker replacement costs are the only 

component cost that is assumed to escalate due to inflation. 

In a system with trackers, if a user enables the “show_realization_graphs” variable, then the plots will 

also include the effects of tracker outages. By checking or unchecking the boxes on the right hand side 

of the DView window, a user may show or hide different lines on the graph. Example graphs of the 

tracking outputs of a fictitious system with unrealistically high failures are shown below to illustrate the 

information found in the graphs. 
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Figure 16. Example Tracker Availability Data in the Output Graphs 

The “Tracker Availability” line shows the percentage of trackers that are available on a given day. The 

“Power Availability Due to Tracker Outages” line shows the power loss factor explained above. The top 

plot in Figure 16 shows a tracking system using the worst-case tracker failure assumption, and the 

bottom plot in Figure 16 shows the flat-failure assumption. Note that in March, the power loss factor 

spikes above 1, due to the reasons explained above. 
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Appendix A –  

Primer on Interpreting and Developing Failure Distributions for 

PV Components 
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Introduction 
This Appendix provides some background on different reliability distributions that are used to represent 

failure and repair activities for PV system components. As this section is intended to be a primer on 

reliability distributions for PV components, it will not cover all reliability topics that could potentially be 

applied to PV component analysis. A good reference on how to select reliability distributions for 

stochastic analysis is presented by Seiler and Alvarez (1995). The purpose here is to educate users of the 

new feature in SAM on what types of reliability distributions may match best to certain types of failure 

and repair activities as seen and applied to PV components.  

The reliability distributions presented here are those that are available for use in SAM, as implemented 

using SNLs open source DAKOTA package for Latin Hypercube and Monte Carlo sampling for uncertainty 

quantification. It is possible that some of the distributions presented in Table A-1 will not be used and 

others will be used more frequently. This table shows ten different distributions and the required input 

parameters. The Following sections will describe what changing distribution parameters will do and 

present visual representations and results of distributions utilized in the small system test scripts. 

 

Table A-1 – SAM LHS Available Distributions 

Distribution First 
Parameter 

Second 
Parameter 

Third 
Parameter 

Uniform Min Max  

Normal Mean (mu) Std. Dev. 
(sigma) 

 

Lognormal* Mean Std. Dev.  

Lognormal-N Mean Std. Dev.  

Triangular A B C 

Gamma Alpha Beta  

Poisson Lambda   

Binomial P N  

Exponential Lambda   

Weibull Alpha or k 
(shape) 

Beta or 
Lambda (scale) 

 

 

*The Sandia LHS library included in SAM requires mean and error factor inputs into lognormal function. The Lognormal-n function requires the 

mean and standard deviation of the UNDERLYING normal distribution. However, we anticipate that most users will have the mean and standard 

deviation of the actual lognormal distribution. Therefore, the LHS function implemented in the PV-RPM script translates from input mean and 

standard deviation to the error factor before calling the lognormal LHS function. The translation equations used can be found at 

https://dakota.sandia.gov/content/latest-reference-manual, Keywords>Variables>lognormal_uncertain.  

Uniform 
The uniform distribution is one that would likely not be utilized for reliability analysis of photovoltaic 

systems as it has a constant probability where there is an equal likelihood that an event would occur 

over the entire distribution. Figure A-1 below shows a pdf of a uniform distribution with a minimum 

value of 2 and a maximum value of 6. 



27 
 

 

Figure A-1. Uniform Distribution 

 

Normal 
A normal (Gaussian) distribution is typically represented by the classic bell shaped curve, where the 

mean (mu or µ) is the location where the apex of the pdf occurs and the standard deviation (sigma or σ)) 

defines the height of the distribution, where 68% of the data that is sampled from the distribution will 

be found (Figure A-2). 

Normal distributions are used when a component is expected, or known to have an increasing failure 

rate over time followed by a reduced failure rate later in life, for a mechanical system where there is 

external stress that creates a wearout effect, and for failures as a result of chemical processes that can 

result in corrosion, for example (Pham, 2006). A concern about using a normal distribution for reliability 

analysis is that if the standard deviation is too large, then negative time values may result. If the 

standard deviation is small, this can prevent that behavior.3 

                                                           
3 http://reliawiki.org/index.php/The_Normal_Distribution  

http://reliawiki.org/index.php/The_Normal_Distribution


28 
 

 

Figure A-2. Normal Distribution 

Figure A-3 shows what happens when the mean is held constant but the standard deviation increases. 

The distribution peak moves down as the first standard deviation spreads out further to the left and 

right. The left tail of the flatter normal distribution shows where the negative time values may result. 

 

Figure A-3. Normal Distribution: Change in Standard Deviation 

Lognormal 
The lognormal distribution is useful for approximating component behavior due to fatigue related stress. 

This type of distribution is also good for modeling repairable systems, which can lead to time to repair 
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(TTR) estimates and repair distributions using maintainability data. When the data is positively skewed, 

it is possible to take the log of the data to approximate a normal distribution. 

As mentioned in the Table A-1 footnote, the SNL LHS code as implemented in SAM requires mean and 

error factor inputs into the lognormal function. The Lognormal-n function requires the mean and 

standard deviation of the UNDERLYING normal distribution. However, we anticipate that most users will 

have the mean and standard deviation of the actual lognormal distribution. Therefore, the LHS function 

implemented in the PV-RPM script translates from input mean and standard deviation to the error 

factor before calling the lognormal LHS function. The translation equations used can be found at 

https://dakota.sandia.gov/content/latest-reference-manual, Keywords>Variables>lognormal_uncertain. 

Depending on the software used to develop the distribution, some lognormal inputs may have a 

negative value for the mean. The use of lognormal-n allows a negative mean value to be processed. 

The parameters used for a lognormal distribution are the mean (mu or µ) and standard deviation (sigma 

or σ). Figure A-4 provides four different plots of the lognormal distribution to show how changing the 

mean and standard deviation impacts the spread and skewness of the pdf. In this case, the solid line 

plots have the same mean, and increasing the standard deviation from 0.5 to 1 results in a shorter peak 

that then shifts left on the x-axis (happens earlier time) becoming more right skewed. When the 

standard deviation is held constant as shown with the dotted lines, the distribution flattens out more as 

the mean increases, becoming less right skewed. 

Considering a failure event that could be expressed by this distribution, there is an increased likelihood 

that the event will happen early on during the component lifetime, though over time, the probability 

that it will happen starts decreasing, either sharply, or more gradually. Using this as a repair distribution, 

there is a high likelihood that the failure will be fixed soon after the event rather than much later, such 

as nuisance tripping events for an inverter. 

Much of what can be represented by a lognormal distribution can also be approximated with a Weibull 

distribution. 
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Figure A-4. Lognormal Distribution: Change in Mean and Standard Deviation  

Triangular 
This type of distribution is used when the component’s behavior may be known, but there isn’t a large 

enough dataset to develop a representative distribution. This allows the user the ability to define a 

minimum, maximum and most probable value. The triangle can be symmetric, or skewed either left or 

right. The SAM implementation asks for variables A, B and C in order of input into the function. A is the 

minimum x value where y = 0. B is the ‘mode’ or peak of the triangle. C is the maximum x value where y 

= 0. 

The example below shows a non-symmetrical triangle, with a minimum time of 0 and maximum of 6, 

with the highest probability of an event at time 2.  
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Figure A-5. Triangular Distribution 

Gamma 
A gamma distribution is one that can be used to represent a failure event where multiple ‘partial’ 

failures occur over time, resulting in complete failure of the component. It is not however a common 

distribution used for ‘common failure mechanisms’.4 

Alpha and Beta parameters are used in the Gamma distribution. Examples of holding the alpha constant 

and beta constant are presented in Figure A-6. When holding the alpha constant, an increasing beta 

lowers the peak and shifts it to the right. When holding beta constant, increasing alpha also lowers the 

peak and shifts it to the right. 

 

                                                           
4 http://reliawiki.org/index.php/The_Gamma_Distribution 
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Figure A-6. Gamma Distribution: Change in Alpha and Beta 

Poisson 
A Poisson distribution is typically used in reliability settings to represent discrete events with a constant 

failure rate over a given time interval. This distribution is essentially a binomial distribution when there 

are low occurrence probabilities. Lightning events impacting a PV system can be modeled using a 

Poisson distribution. Spare parts analysis can also be done using a Poisson distribution, if a constant 

failure rate is already known.5 

The symbol used in the Poisson distribution is Lambda (Shape parameter) which can be thought of the 

expected or average number of events. Increasing Lambda from 0 results in a shift of the distribution to 

the right, and a lowering of the peak value. 

                                                           
5 https://src.alionscience.com/pdf/POIS_APP.pdf  

https://src.alionscience.com/pdf/POIS_APP.pdf
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Figure A-7. Poisson Distribution: Change in Lambda 

 

Binomial 
Like Poisson, integer values are used as random numbers. However, binomial distributions are typically 

used in experiments where there is a “pass” or “fail” criterial. These will likely not be used in a system-

level analysis of a PV plant and are more appropriate to use say in a manufacturing setting when 

analyzing defective parts used to build a specific component. 

Exponential 
An exponential distribution is used for components that have a constant failure rate. Electronic 

equipment is one area that can be modeled using an exponential distribution. For PV, inverters may 

have failure modes that follow an exponential distribution.  

In this case, we are only considering a one-parameter exponential distribution. As Lambda increases, the 

distribution moves left and the peak increases (Figure A-8). The inverse of Lambda is the component’s 

mean time between failure. However, that is only true if the component has a constant failure rate (it 

cannot be decreasing or increasing over time). 

An exponential distribution is also the same as a Weibull distribution when the Beta/slope (shape) is 

equal to 1, meaning there is a constant failure rate. 
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Figure A-8. Exponential Distribution: Change in Lambda 

Weibull 
Weibull distributions are the most versatile of all probability distributions and can be used in place of 

many of the other distributions presented in this appendix as it can handle constant and non-constant 

(decreasing or increasing) failure rates. It can be used to model component fatigue, corrosion, diffusion, 

abrasion and other degradation processes.  

The Weibull distribution is changed primarily through the shape (slope) and scale (spread) parameters.  

There are many different parameter labels used in software programs. Therefore, remembering the 

shape and the scale will translate across different greek symbols used by different scholars. The most 

important aspects of the Weibull distribution are as follows:  

• A shape parameter less than 1 means that there is a decreasing failure rate for that component. 

o This can indicate the infant mortality phase where most of the failures have already 

occurred and become less frequent over time. 

• A shape parameter equal to one means the component has a constant failure rate.  

• A shape parameter greater than 1 means there is an increasing failure rate. 

o As the component ages, the failure rate may start increasing as it reaches the end of its 

life. 

• The scale parameter helps define the spread of the data and is the 63.2 percentile of the failure 

data.  

o For the first plot in blue (Shape = 0.5, Scale = 5), (Figure A-9) the scale of 5 would mean 

that 63.2 percent of the component would fail in the first 2 years (years on x-axis). 
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Figure A-9. Weibull Distribution: Change in Shape and Scale 

The quintessential bathtub curve that is shown in many discussions of reliability engineering can be 

constructed from three different Weibull distributions.6 If, for example, you want to simulate an inverter 

failure and have some knowledge that the inverter has not yet been extensively field tested. Figure A-10 

shows three different distributions that can be used to simulate either general inverter failures, or can 

be used to isolate a specific component. How this can be done in SAM (As shown in Section 2.2.5) is to 

develop three failure distributions. For the first, using meta.inverter.failure[0].distribution = ‘weibull’, 

then on the next line for ‘parameters’, add in the shape first, and then scale parameter [0.5,2]. This can 

be repeated for the next two failure modes meta.inverter.failure[1].distribution and 

meta.inverter.failure[2].distribution. Specific repair distributions can also be defined for each failure 

mode, with parameters chosen to replicate how fast the repair will be addressed depending on the 

severity of the modeled component, or stage in the component lifetime. 

As Weibull distributions are like others presented here, being able to compare different distributions 

may be of interest. A good way to make this comparison is available in this on-line calculator.7 

                                                           
6 http://www.weibull.com/hotwire/issue14/relbasics14.htm  
7 http://biodevices.et.tudelft.nl/ReliabilityEngineering/Distributions/Compare/   

http://www.weibull.com/hotwire/issue14/relbasics14.htm
http://biodevices.et.tudelft.nl/ReliabilityEngineering/Distributions/Compare/
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Figure A-10. Three distributions used to develop bathtub curve in a probability plot 

 

Developing Failure and Repair Distributions 
To determine the best fit reliability distribution for failure and repair activities, the time to failure (TTF) 

and time to repair (TTR) for the event in consideration must be calculated. The software used here to 

develop the distributions may use different conventions than other software, so the TTF and TTR 

presented here may be different than other software packages.  To calculate the TTF, the commissioning 

time for the PV inverter is subtracted from each downtime start as shown in Figure A-11. For this 

example, all of the data is in days, however this can also be done in hours or in years, depending on the 

type of analysis platform the data will be utilized within. For the SAM PV-RPM feature, the data must be 

in days. The distribution parameters cannot be converted from hours to another time unit, so it’s 

important to determine what time unit is necessary before making the calculations. 

 

Figure A-11. Calculation of Time to Failure 
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To calculate the TTR, the difference between each failure end time and the associated failure start time 

is calculated as seen in Figure A-12. Both of these calculations for a hypothetical PV system are 

presented in Table A-2 as an example of how to take raw event data, in this case hypothetical inverter 

fan events, and develop the correct TTF or TTR for reliability probability distribution development. 

 

Figure A-12.  Calculation of Time to Repair 

 

 

Table A-2 – Example dataset for calculating the TTF and TTR 

Event 
Inverter 

Commissioning 
Date 

Downtime 
Start 

Downtime 
End 

TTF (days) = 
Downtime Start – 

Commissioning Date 

TTR(days) = 
Downtime End – 
Downtime Start 

Fan 
failure 

6/15/2016 0:00 
 

6/30/2016 
14:05 

7/1/2016 
23:59 

=6/30/2016 14:05 - 
6/15/2016 0:00 

= 15.586 

= 7/1/2016 23:59 - 
6/30/2016 14:05 

= 1.412 

Fan 
failure 

7/13/2016 
13:15 

7/13/2016 
15:05 

=7/13/2016 13:15 – 
6/15/2016 0:00 

= 28.552 

= 7/13/2016 15:05 - 
7/13/2016 13:15 

= 0.076 

Fan 
failure 

7/14/2016 
12:10 

7/14/2016 
14:46 

=7/14/2016 12:10 – 
6/15/2016 0:00 

= 29.507 

=7/14/2016 14:46 – 
7/14/2016 12:10 

=0.108 

i – These are example times for a hypothetical failure mode 

Once the TTF and TTR have been calculated, the best fit reliability distributions are developed by 

comparing the fit of some of the more commonly used distributions that approximate the faults and 

failures SNL has seen for PV systems.  For TTF, these distributions include Weibull, Gamma and 

Exponential. For TTR these distributions include Normal, Lognormal and Exponential. For each 

distribution, the parameters of interest are listed in Table A-1. Probability plots are used to evaluate the 

fit of each distribution by estimating a cumulative distribution function through plotting the observation 
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against its estimated cumulative probability.8 Using a program such as Minitab, Weibull++ or other 

software environment such as Matlab or Python, these plots are generated. To determine which 

distributions can be eliminated, visual inspection along with goodness-of-fit statistics are then 

evaluated. The examples below are from Minitab. 

The Anderson-Darling statistic (AD) tests whether the sample data comes from a given distribution. For a 

‘good fit’ the AD statistic should be less than one; however, to determine if one distribution is a better 

fit than another, the AD statistic should be significantly lower than the other distribution. In addition to 

the AD statistic, the probability value, or ‘p-value,’ is used. For some significance level α, (usually 0.05), a 

p-value ≤ α indicates the data does not follow the distribution while a p-value > α indicates that the 

distribution should fail to be rejected. Generally, when comparing different distributions, the highest p-

value will indicate the better fitting distribution. Visually one can use the probability plot to further 

determine if the distribution is a good fit by ensuring that the large majority of the points fall within the 

confidence intervals and the data follows the straight line of the plot.9  Using a combination of these 

three goodness-of-fit evaluations, the best fit probability distribution can eventually be determined by a 

process of eliminating the distributions that are not a good fit to the underlying data. 

As an example, we will consider the TTF to evaluate what failure distributions may have the best fit for 

the inverter fan failure data. A repair analysis will not be shown here, though following the same steps 

below would help define a repair distribution. It is assumed that all of the events occurred at one site, 

and impacted every one of the inverters. Figure A-13 shows the probability plots for each distribution of 

interest.  The AD statistic for each distribution is greater than one and the p-values are all smaller than 

0.05, both indicating that the data is not necessarily a good fit any of the distributions. Notice, in each 

plot there seems to be three different slopes to the data.  Often, this is indicative of different underlying 

failure modes. Not every dataset will need to be separated, however it is important to check 

maintenance logs of different failure events to ensure that they are cataloged correctly. It may be that 

the root cause of the issue has not yet been determined and the resulting data may indicate that it 

needs to be broken up and re-analyzed.  

Separating out each set of input data, we again consider the probability plots for each grouping as 

shown in Figure A-14 where Probability Plot 1 is the bottom slope and 3 is the top slope.  The p-values 

and AD statistic for each plot are shown in Table A-3.     

 

                                                           
8 http://support.minitab.com/en-us/minitab/17/topic-library/basic-statistics-and-graphs/graphs/graphs-of-
distributions/probability-plots/probability-plot/  
9 http://blog.minitab.com/blog/adventures-in-statistics-2/how-to-identify-the-distribution-of-your-data-using-
minitab  

http://support.minitab.com/en-us/minitab/17/topic-library/basic-statistics-and-graphs/graphs/graphs-of-distributions/probability-plots/probability-plot/
http://support.minitab.com/en-us/minitab/17/topic-library/basic-statistics-and-graphs/graphs/graphs-of-distributions/probability-plots/probability-plot/
http://blog.minitab.com/blog/adventures-in-statistics-2/how-to-identify-the-distribution-of-your-data-using-minitab
http://blog.minitab.com/blog/adventures-in-statistics-2/how-to-identify-the-distribution-of-your-data-using-minitab
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Figure A-13.  Probability plots for Fan Failure in days 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-14. Probability plots for separated slopes of Fan Failure Data 
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Table A-3 – Probability Plot Data from Figure A-15 

Probability Plot 1 

Distribution Exponential Weibull Gamma 

AD statistic 0.873 0.540 0.515 

p-value 0.154 0.164 0.216 

Probability Plot 2 

Distribution Exponential Weibull Gamma 

AD statistic 11.133 0.742 0.285 

p-value <0.003 0.048 >0.250 

Probability Plot 3 

Distribution Exponential Weibull Gamma 

AD statistic 2.588 0.849 0.285 

p-value <0.003 0.024 0.087 

 

Consider probability plot 1.  The exponential distribution can be eliminated first as it has the highest AD 

statistic and lowest p-value.  Comparing the Weibull and Gamma distributions, both AD statistics are 

close so we rely on the larger of the two p-values to determine Gamma as the best fit distribution.  For 

probability plot 2, the exponential distribution can again be eliminated right away as the data does not 

follow the cumulative distribution in the probability plot and does not stay within the confidence 

intervals.  The Weibull distribution can also be eliminated as the p-value is lower than 0.05, leaving 

Gamma as the best fit.  Using the same methodology, Gamma is determined to be the best fit for the 

third data set as well.  Because each of the above smaller sets of data came from the TTF data for Fan 

Failure, it can be decided that Gamma is the best fit distribution for the Fan Failure.  Again, using a 

program such as Minitab, the parameters for each smaller set of Fan Failure data are estimated.   

Table A-4 – Gamma distribution data from best fit of each probability plot 

 Alpha Beta 

Probability Plot 1 2.10 34.64 

Probability Plot 2 35.76 7.75 

Probability Plot 3 5.36 153.01 

 

As mentioned above, the first plot in Figure A-13 was separated into three different plots in Figure A-14. 

The gamma parameters in Table A-4 could then be used to represent three different failure modes (at 

different life stages) if the fan failure data revealed that there were three distinct events that based on 

an analysis of the event data by an operations/inverter expert, for example.



41 
 

References 

Pham, H., (2006), “System Software Reliability,” Chapter 2 – System Reliability Concepts. Springer, 440 p. 

Seiler, F.A., J.L. Alvarez (1996), “On the Selection of Distributions for Stochastic Variables,” Risk Analysis 

16(1), p. 5-18. 


