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Company Snapshot 
• Established in 1983; nearly 30 years of 

renewable energy industry experience 

• Independent assessments on       
50,000+ MW 

• Project roles in over 80 countries 

• Over 100 professional staff 
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Agenda 
1. Why is Solar Data Uncertainty Important? 
2. What Data are Available? 
3. How do Available Data Differ? 
4. Case Study Results 
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Sources of Energy Uncertainty 

Annual  
Degradation 
(0.5 – 1 %) 

Transposition  
To Plane of Array 

(0.5 – 2%) 

Energy Simulation & Plant Losses 
(3 – 5 %) 

Solar Resource Uncertainty 
(Measurement, IA Variability, POR, Spatial) 

(5 – 17%) 
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Sources of Solar Resource Uncertainty 

Reducing measurement uncertainties in the solar resource assessment will make the project 
more attractive and less risky to outside investors 

Spatial  
Variability 

(0– 1%) 

Representativeness of 
Monitoring Period 

(0.5 – 2%) 

Inter-annual Variability 
(2 – 5%) 

Measurement Uncertainty 
(2  – 15%) 
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Data Sources 

Modeled Data – Various Sources On-site Measured Data 

Nearby Reference Station Data 
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An Example Solar Resource Monitoring System 

Rotating Shadowband Radiometer Wind Anemometer and Vane 

Temperature and 
Relative Humidity 
Probe Data Logger 

Tipping Bucket 
Rain Gauge 
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On-Site Monitoring Best Practices 

Measurement Plan 
• Solar instrumentation 

• Meteorological: temperature, 
wind speed, precipitation 

• Sampling/recording rate 

• Measurement period 

 

Installation and Commissioning 
• Site selection 

• Sensor verification 

• Communications and data QA 

• Documentation 

Site Maintenance 
• Regular schedule 

• Clean, level instrumentation 

• Site security 

 

Data Validation and Quality 
Control 
• Regular system monitoring 

• Comparison with reference data 
and concurrent satellite data 

• Visual data screening 

• Clear sky / extreme values 
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Modeled Data Sources 

• US National Solar Radiation Database (NSRDB) 
– Mostly modeled solar data using numerical and satellite models 

– NSRDB TMY3 data set for specific locations in U.S 

 

 

 

 

 

 

 

 

 

 

– 14% difference in a 60km radius around Dallas, TX 

• Other sources of public and private modeled data (Meteonorm, NASA, others) 
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Long Term GHI from TMY3s near Dallas, TX 
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Data Source Advantages and Limitations 

Data Source Advantages  Limitations and Risks Intended Use 

On-Site 
Measurements 

• Site-specific data 

• Customized for project 
needs 

• Station details well-known 

• Reduced uncertainty 

• Shorter period of record 
(correlate with long-term 
data) 

 

• High-confidence resource and 
energy estimates 

• Bankable reports  

• In-depth characterization of 
seasonal and diurnal climate 

Observed 
Reference 
Station 

• Ground measurements 

• Period of record may be 
longer 

• Publicly available 

• Scarcity of sites 

• Location compared to 
project site 

• Uncertainty: quality of O&M, 
instrumentation, 
inconsistencies in data 

• Confirm trends 

• Identify regional biases 

• Correlation with on-site data 

Modeled • Grid-cell specific 

• Publicly available 

• High data recovery 

  

• Grid resolution 

• Regional biases 

• Greater uncertainty 

• Initial prospecting 

• Smaller projects 

• Correlation with on-site data 
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How do Available Data Differ? 

Variation in Magnitude 

 

 

        Variation in Distribution 
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How do Available Data Differ? 

Comparison of Modeled and On-Site Data Sets 
• Obtained Long-term GHI estimates from seven modeled data sources.  

• Compared to long-term GHI estimate measured at NREL-sponsored stations. 

• Compared frequency distribution of modeled and measured data sets. 
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How do Available Data Differ? 

Variation in Magnitude 

 
 

 

 

 

 

 

 

 

• Up to 10.8% variation from measured long-term. 

• When translated to energy, this difference has a similar percentage 
impact on the projected energy output. 

Data Source Resolution 
Avg Absolute 

Diff from 
NREL Station 

Max 
Absolute Diff 
from NREL 

Station 

Standard 
Deviation 

SUNY 10 km 2.9% 9.1% 4.0% 
CPR 10 km 2.0% 9.2% 3.5% 

Meteonorm Interpolation 4.2% 10.8% 5.7% 
Closest TMY3 NA 3.6% 6.9% 4.1% 
Closest Class I 

TMY3 NA 1.8% 2.7% 1.4% 

Closest TMY2 NA 2.4% 6.0% 2.5% 
NASA SSE 1 degree 2.4% 5.0% 2.7% 
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How do Available Data Differ? 

Variation in Distribution 
• Typical Meteorological Year (TMY)  using satellite-modeled data. 

 

• Compared to on-site distribution in a representative meteorological 
year (RMY) scaled to same long-term GHI. 

 

• RMY = one year of on-site measurements scaled to long-term GHI. 
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How do Available Data Differ? 

Variation in Distribution 
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How do Available Data Differ? 

Variation in Distribution 
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How do Available Data Differ? 

Variation in Distribution 
• Variation can result in up to 4% in energy production estimates. 

 

• When translated to energy, this difference has a similar percentage 
impact on the projected energy output. 

 

• Strengths and limitations exist for each data set. 
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The Case Study  

Approach 
• 11 sites with 1-2 years of 

on-site measured data 

• 2 solar energy 
assessments for each site 
• Modeled data alone 

• On-site measurements 
projected over project life 

• Uncertainty assessment 
for each scenario 
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Uncertainty Difference: Modeled vs. Onsite 

0 
1 
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3 
4 
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8 
9 

10 

1 2 3 4 5 6 7 8 9 10 11 

Uncertainty Using Modeled Data Only (%) Uncertainty Using On-Site Data (%) Reduction in Uncertainty (%) 

Average uncertainty reduction of over 3.5%, range from 2.2% to 4.6% 
(3.9% reduction excluding outliers for maintenance practices) 

Sites 10 and 11 represent monitoring programs that didn’t employ best 
practices, corresponding to higher uncertainty.  
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What Does it Mean? 

Based on this case study, combined project uncertainty (solar resource 
and energy uncertainty) was compared for modeled data and on-site 
data: 
 
 
 
 
 
 
 
 
 
*Represents on-site monitoring program following best practices. 

Solar Data 
Source 

Solar Resource 
Uncertainty 

(from case study) 

Typical 
Uncertainty for 

Energy 

Combined 
Project 

Uncertainty 

Modeled Data 8.7 - 9.5% 5.0% 10.0 – 11.0% 

On-Site 
Measured Data* 

4.5 – 5.9% 5.0% 6.7 – 7.7% 
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Effect of Uncertainty 

On-Site Solar Data 

Reduced Uncertainty 

Higher Confidence in 
Project Return 

Project More 
Attractive To Investors 

 
 

On-site monitoring can increase the P90 by 
over 5% and the P99 by over 10%.  
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Conclusions 

• Site-specific measurements increase accuracy of P50. 
 

• Site-specific measurements better reflect solar frequency 
distribution than modeled data sources. 
 

• On-site monitoring with best practices reduces energy 
uncertainty by 3.5% or greater. 
 

• On-site monitoring can increase the P90 by over 5% and the 
P99 by over 10%.  
 

• On-site monitoring = greater confidence in energy 
estimates. 
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Questions 

+1 877-899-3463 

info@awstruepower.com 

awstruepower.com 
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